Branched coverings of \mathbb{CP}^2 and invariants of symplectic 4-manifolds

Denis AUROUX

June 22, 1999

1) Geometry

2) Topology (joint with L. Katzarkov)

Introduction

X compact Kähler manifold, L ample bundle. Holomorphic sections of $L^k,\,k\gg 0$

 \Rightarrow projective embedding $X \hookrightarrow \mathbb{CP}^N$ (Kodaira).

 \Rightarrow smooth hypersurfaces (Bertini).

 \Rightarrow ...

X complex surface, 3 generic sections of L^k $\Rightarrow f: X \to \mathbb{CP}^2$ branched covering,

singularities = cusps + nodes.

 (X^{2n}, ω) compact symplectic manifold : $\exists J$ compatible almost-complex structure.

- J is not integrable
 - \Rightarrow no holomorphic coordinates
 - \Rightarrow no holomorphic sections

Donaldson's idea :

Approximately holomorphic sections \Rightarrow symplectic analogues of classical results.

Asymptotically holomorphic sections

 (X^{2n}, ω) symplectic, compact

- $\frac{1}{2\pi}[\omega] \in H^2(X, \mathbb{Z})$ (not restrictive)
- J compatible with ω ; $g(.,.) = \omega(.,J.)$
- L line bundle such that $c_1(L) = \frac{1}{2\pi}[\omega]$
- $|\cdot|_L$; ∇^L , curvature $-i\omega$
- $g_k = k g$.

Definition. $(s_k)_{k\gg 0} \in \Gamma(E_k)$ are asymptotically holomorphic ("A.H.") if $\forall p \in \mathbb{N}, \ |s_k|_{C^p,g_k} = O(1)$ and $|\bar{\partial}s_k|_{C^p,g_k} = O(k^{-1/2}).$

Definition. $(s_k)_{k\gg 0} \in \Gamma(E_k)$ are uniformly transverse to 0 if $\exists \eta > 0 / s_k$ is η -transverse to 0 $\forall k$, i.e.

 $\forall x \in X, |s_k(x)| < \eta \Rightarrow \nabla s_k(x) \text{ surjective and } > \eta.$

Proposition. Let $(s_k)_{k\gg 0} \in \Gamma(E_k)$, A.H. and uniformly transverse to 0 : then for $k \gg 0$, $W_k = s_k^{-1}(0)$ is a symplectic submanifold of X (approximately Jholomorphic).

Symplectic submanifolds and beyond

Theorem 1 (Donaldson) For $k \gg 0$, the bundles L^k admit sections which are A.H. and uniformly transverse to 0.

 \Rightarrow construction of symplectic submanifolds.

Theorem 2 (Donaldson) For $k \gg 0$, the bundles L^k admit pairs of A.H. sections which endow X with a structure of symplectic Lefschetz pencil.

Structure of the proof

- 1. existence of very localized A.H. sections of L^k
- 2. effective Sard theorem for A.H. functions : \Rightarrow get uniform transversality over a small ball.
- 3. globalization principle (transversality is an open property).

Branched coverings

dim X = 4: nowhere vanishing section of $\mathbb{C}^3 \otimes L^k$ $\Rightarrow f = (s^0 : s^1 : s^2) : X \to \mathbb{CP}^2.$

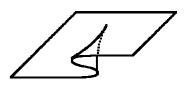
Definition. A map $f : X \to \mathbb{CP}^2$ is ϵ -holomorphically modelled at x on $g : \mathbb{C}^2 \to \mathbb{C}^2$ if $\exists U \ni x, V \ni f(x)$, and local C^1 -diffeomorphisms $\phi : U \to \mathbb{C}^2$ and $\psi :$ $V \to \mathbb{C}^2$, ϵ -holomorphic, (i.e. $|\phi_*J - \mathbb{J}_0| < \epsilon$) such that $f_{|U} = \psi^{-1} \circ g \circ \phi$.

Definition. A map $f: X \to \mathbb{CP}^2$ is an ϵ -holomorphic covering branched along $R \subset X$ if Df is surjective everywhere except along R, and if f is locally ϵ -holomorphically modelled at any point of X on one of the following maps :

 $- local diffeomorphism : (x, y) \mapsto (x, y).$

-branched covering : $(x, y) \mapsto (x^2, y)$. $R: x = 0 \qquad f(R): X = 0$

 $- cusp : (x, y) \mapsto (x^3 - xy, y).$ $R: y = 3x^2 \qquad f(R): 27X^2 = 4Y^3$



Existence of branched coverings

Theorem 3. For $k \gg 0$, there exist A.H. sections of $\mathbb{C}^3 \otimes L^k$ which make X an ϵ_k -holomorphic branched covering of \mathbb{CP}^2 , with $\epsilon_k = O(k^{-1/2})$.

Topological properties \rightsquigarrow analytic properties ?

Transversality conditions :

 $s_k \in \Gamma(\mathbb{C}^3 \otimes L^k)$ A.H., $f_k = \mathbb{P}(s_k), \gamma > 0$ fixed.

(T1) $|s_k(x)| \ge \gamma \ \forall x \in X.$

(T2) $|\partial f_k(x)|_{g_k} \ge \gamma \ \forall x \in X.$

Branching $\equiv (2,0)$ -Jacobian Jac $(f_k) = \det(\partial f_k)$. (T3) Jac (f_k) is γ -transverse to 0.

 $\Rightarrow R(s_k) = \operatorname{Jac}(f_k)^{-1}(0) \text{ symplectic and smooth.}$ Angle between $TR(s_k)$ and $\operatorname{Ker} \partial f_k \rightsquigarrow \mathcal{T}(s_k)$. (T4) $\mathcal{T}(s_k)$ is γ -transverse to 0.

 \Rightarrow zeros of $\mathcal{T}(s_k)$ = isolated, non-degenerate cusps Holomorphic case : (T1–T4) \Rightarrow branched covering. Vanishing of $\bar{\partial} f_k$ at the branch points ?

J-compatibility conditions :

 $\exists \tilde{J}_k$ compatible with ω , integrable near the cusps and satisfying $|\tilde{J}_k - J| = O(k^{-1/2})$, such that

(C1) f_k is \tilde{J}_k -holomorphic near the cusps.

(C2) $\forall x \in R_{\tilde{J}_k}(s_k)$, Ker $\partial f_k(x) \subset \text{Ker } \bar{\partial} f_k(x)$.

Proposition. $(s_k)_{k\gg 0} \in \Gamma(\mathbb{C}^3 \otimes L^k)$, A.H., satisfying (T1-T4) and $(C1-C2) \Rightarrow$ for $k \gg 0$, $f_k = \mathbb{P}(s_k)$ is an ϵ_k -holomorphic branched covering, $\epsilon_k = O(k^{-1/2})$.

 \Rightarrow existence of sections satisfying (T1-T4) & (C1-C2) ?

-(T1-T4): techniques \simeq construction of submanifolds.

- local transversality result : very localized perturbation of $s_k \rightsquigarrow$ property over a small ball.
- globalization principle : combine the local perturbations \rightsquigarrow property at any point of X.

-(C1-C2): small perturbations near $R(s_k)$

 \Rightarrow add to s_k a quantity which exactly cancels ∂f_k .

Characterization of symplectic manifolds

Properties of constructed coverings w.r.t. the symplectic structure ?

Proposition. The 2-forms $\tilde{\omega}_t = t f^* \omega_0 + (1 - t) k \omega$ are symplectic $\forall t \in [0, 1[, and (X, \tilde{\omega}_t) is then symplec$ $tomorphic to <math>(X, k \omega)$.

The property of being a branched covering of \mathbb{CP}^2 characterizes symplectic manifolds in dimension 4 :

Proposition. Let $f : M^4 \to \mathbb{CP}^2$ be a map which identifies at any point with one of the three models for branched coverings in local coordinates (A.H. chart on \mathbb{CP}^2 , but not on M).

Then M admits a symplectic structure arbitrarily close to $f^*\omega_0$ in its cohomology class. This symplectic structure is canonical up to symplectomorphism.

Coverings and symplectic invariants

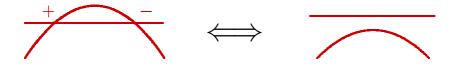
Theorem 4. For $k \gg 0$, the branched coverings obtained from A.H. sections of $\mathbb{C}^3 \otimes L^k$ are unique up to isotopy, independently of the chosen J.

 \Rightarrow symplectic invariants of (X, ω) .

 $D = f(R) \subset \mathbb{CP}^2$ is a symplectic curve. Generic singularities :

- 1. \rightarrow cusps.
- 2. \checkmark nodes with positive transverse intersection.
- 3. \checkmark nodes with negative transverse intersection.

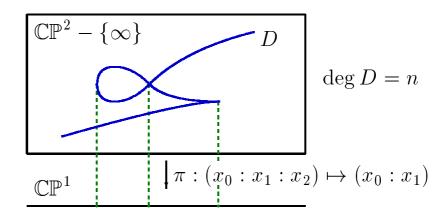
Theorem $4 \Rightarrow$ up to cancellation of nodes, the topology of D is a symplectic invariant.



 \Rightarrow extension of Moishezon and Teicher's braid group techniques to the symplectic case.

Monodromy and braid groups

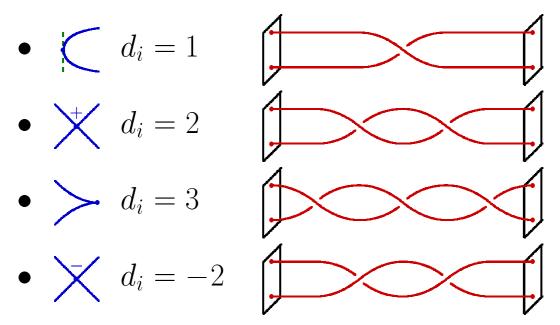
After perturbation, the curve D can be realized as a singular branched covering of \mathbb{CP}^1 .



Fiber $\simeq \mathbb{C} \Rightarrow$ restricting to $\mathbb{C}^2 = \pi^{-1}(\mathbb{C})$, monodromy with values in the braid group B_n :

 $\rho: \pi_1(\mathbb{C} - \operatorname{crit}) \to B_n.$

The topology of D is described by a braid group factorization, $\Delta^2 = \prod Q_i X_1^{d_i} Q_i^{-1}, d_i \in \{-2, 1, 2, 3\}$:



Up to conjugation, Hurwitz moves and node eliminations, this factorization is a symplectic invariant.

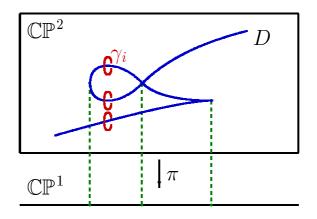
Reconstructing a symplectic 4-manifold

Algebraic data characterizing a branched covering :

- 1. Braid factorization $\Delta^2 = \prod Q_i X_1^{d_i} Q_i^{-1}$.
- 2. Geometric monodromy representation

$$\theta: \pi_1(\mathbb{CP}^2 - D) \twoheadrightarrow S_N.$$

 $\pi_1(\mathbb{CP}^2 - D)$ is generated by "geometric generators" $(\gamma_i)_{1 \leq i \leq n}$; relations given by the braid factorization.



 θ maps geometric generators to transpositions. cusp \Rightarrow (12)(23), node \Rightarrow (12)(34).

Theorem 5. The braid factorization Δ^2 determines Dup to smooth isotopy ; D and θ determine (X, ω) up to symplectic isotopy.

Branched coverings and Lefschetz pencils (X^4, ω) (Donaldson) Symplectic Lefschetz Branched covering pencil \mathbb{CP}^2 \hat{X} Ò γ_i D Ò Ò π \mathbb{CP}^1 \mathbb{CP}^1 monodromy = Dehn twistFactorization in the Factorization in the braid group mapping class group $\Delta^2 = \prod_i Q_i X_1^{d_i} Q_i^{-1}$ $Id = \prod_i t_{\gamma_i}$ + monodromy repn. θ . ?

Branched coverings and Lefschetz pencils

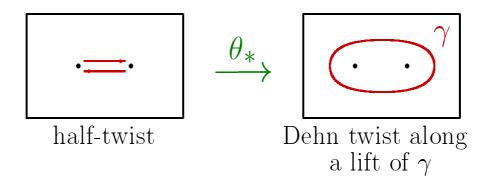
 By forgetting one of the components (i.e. projecting to CP¹), a branched covering becomes a symplectic Lefschetz pencil.

 \Rightarrow alternate proof of Donaldson's result.

2. θ : $\pi_1(\mathbb{CP}^2 - D) \to S_N$ determines a subgroup $B_n^0(\theta) \subset B_n$ and a group homomorphism $\theta_* : B_n^0(\theta) \to \mathrm{Map}_a.$

 $B_n^0(\theta)$ contains the image of the braid monodromy.

- the factors of degree ± 2 or 3 lie in the kernel of θ_* .
- θ_* maps the factors of degree 1 to Dehn twists.



 $\Rightarrow \Delta^2$ and θ allow the explicit computation of the monodromy of the corresponding Lefschetz pencil.