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Introduction

X compact Kähler manifold, L ample bundle.

Holomorphic sections of Lk, k � 0

) projective embeddingX ,! C P
N (Kodaira).

) smooth hypersurfaces (Bertini).

) : : :

X complex surface, 3 generic sections of Lk

) f : X ! C P
2 branched covering,

singularities = cusps + nodes.

(X2n; !) compact symplectic manifold :

9J compatible almost-complex structure.

J is not integrable

) no holomorphic coordinates

) no holomorphic sections

Donaldson's idea :

Approximately holomorphic sections

) symplectic analogues of classical results.
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Asymptotically holomorphic sections

(X2n; !) symplectic, compact

�
1
2�
[!] 2 H2(X;Z) (not restrictive)

� J compatible with ! ; g(:; :) = !(:; J:)

� L line bundle such that c1(L) =
1
2�
[!]

� j � jL ; rL, curvature �i!

� gk = k g.

De�nition. (sk)k�0 2 �(Ek) are asymptotically holo-

morphic (�A.H.�) if

8p 2 N ; jskjCp;gk = O(1) and j�@skjCp;gk = O(k�1=2):

De�nition. (sk)k�0 2 �(Ek) are uniformly transverse

to 0 if 9� > 0 =sk is �-transverse to 0 8k, i.e.

8x 2 X; jsk(x)j < � ) rsk(x) surjective and > �:

Proposition. Let (sk)k�0 2 �(Ek), A.H. and uni-

formly transverse to 0 : then for k � 0, Wk = s�1
k (0)

is a symplectic submanifold of X (approximately J-

holomorphic).
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Symplectic submanifolds and beyond

Theorem 1 (Donaldson) For k � 0, the bundles

Lk admit sections which are A.H. and uniformly trans-

verse to 0.

) construction of symplectic submanifolds.

Theorem 2 (Donaldson) For k � 0, the bundles

Lk admit pairs of A.H. sections which endow X with

a structure of symplectic Lefschetz pencil.

Structure of the proof

1. existence of very localized A.H. sections of Lk

2. e�ective Sard theorem for A.H. functions :

) get uniform transversality over a small ball.

3. globalization principle

(transversality is an open property).
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Branched coverings

dimX = 4 : nowhere vanishing section of C 3 
 Lk

) f = (s0 : s1 : s2) : X ! C P
2:

De�nition. A map f : X ! C P
2 is �-holomorphically

modelled at x on g : C 2 ! C 2 if 9U 3 x, V 3 f(x),

and local C1-di�eomorphisms � : U ! C 2 and  :

V ! C 2, �-holomorphic, (i.e. j��J � J0j < �) such

that fjU =  �1 Æ g Æ �.

De�nition. A map f : X ! C P
2 is an �-holomorphic

covering branched along R � X if Df is surjective

everywhere except along R, and if f is locally �-holo-

morphically modelled at any point of X on one of the

following maps :

� local di�eomorphism : (x; y) 7! (x; y).

� branched covering : (x; y) 7! (x2; y).

R : x = 0 f(R) : X = 0

� cusp : (x; y) 7! (x3 � xy; y).

R : y = 3x2 f(R) : 27X2 = 4Y 3
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Existence of branched coverings

Theorem 3. For k � 0, there exist A.H. sections of

C 3 
 Lk which make X an �k-holomorphic branched

covering of C P 2, with �k = O(k�1=2).

Topological properties  analytic properties ?

Transversality conditions :

sk 2 �(C 3 
 Lk) A.H., fk = P(sk),  > 0 �xed.

(T1) jsk(x)j �  8x 2 X .

(T2) j@fk(x)jgk �  8x 2 X .

Branching � (2; 0)-Jacobian Jac(fk) = det(@fk).

(T3) Jac(fk) is -transverse to 0.

) R(sk) = Jac(fk)
�1(0) symplectic and smooth.

Angle between TR(sk) and Ker @fk  T (sk).

(T4) T (sk) is -transverse to 0.

) zeros of T (sk) = isolated, non-degenerate cusps

Holomorphic case : (T1�T4) ) branched covering.

Vanishing of �@fk at the branch points ?
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J-compatibility conditions :

9 ~Jk compatible with !, integrable near the cusps and

satisfying j ~Jk � J j = O(k�1=2), such that

(C1) fk is ~Jk-holomorphic near the cusps.

(C2) 8x 2 R ~Jk
(sk), Ker @fk(x) � Ker �@fk(x):

Proposition. (sk)k�0 2 �(C 3
Lk), A.H. , satisfying

(T1�T4) and (C1�C2) ) for k � 0, fk = P(sk) is an

�k-holomorphic branched covering, �k = O(k�1=2).

) existence of sections satisfying (T1�T4) & (C1�C2) ?

� (T1�T4) : techniques ' construction of submanifolds.

� local transversality result : very localized perturba-

tion of sk  property over a small ball.

� globalization principle : combine the local pertur-

bations  property at any point of X .

� (C1�C2) : small perturbations near R(sk)

) add to sk a quantity which exactly cancels �@fk.
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Characterization of symplectic manifolds

Properties of constructed coverings w.r.t. the symplec-

tic structure ?

Proposition. The 2-forms ~!t = t f �!0 + (1 � t) k!

are symplectic 8t 2 [0; 1[, and (X; ~!t) is then symplec-

tomorphic to (X; k!).

The property of being a branched covering of C P 2 char-

acterizes symplectic manifolds in dimension 4 :

Proposition. Let f : M 4 ! C P
2 be a map which

identi�es at any point with one of the three models for

branched coverings in local coordinates (A.H. chart on

C P
2, but not on M).

Then M admits a symplectic structure arbitrarily

close to f �!0 in its cohomology class. This symplectic

structure is canonical up to symplectomorphism.

7



Coverings and symplectic invariants

Theorem 4. For k � 0, the branched coverings ob-

tained from A.H. sections of C 3
Lk are unique up to

isotopy, independently of the chosen J .

) symplectic invariants of (X;!).

D = f(R) � C P
2 is a symplectic curve.

Generic singularities :

1. r cusps.

2. r

+

nodes with positive transverse intersection.

3. r

�

nodes with negative transverse intersection.

Theorem 4) up to cancellation of nodes, the topology

of D is a symplectic invariant.

()
q
+

q
�

) extension of Moishezon and Teicher's braid group

techniques to the symplectic case.
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Monodromy and braid groups

After perturbation, the curve D can be realized as a

singular branched covering of C P 1.

?� : (x0 : x1 : x2) 7! (x0 : x1)
C P

1

C P
2 � f1g D

degD = n

q q q

q q

q

Fiber ' C ) restricting to C 2 = ��1(C ),

monodromy with values in the braid group Bn :

� : �1(C � crit)! Bn:

The topology of D is described by a braid group fac-

torization, �2 =
Q
QiX

di
1 Q

�1
i ; di 2 f�2; 1; 2; 3g :

� r

r

r

r

r

di = 1

� r

+
r

r

r

r

di = 2

� r

r

r

r

r

di = 3

� r

�

r

r

r

r

di = �2

Up to conjugation, Hurwitz moves and node elimina-

tions, this factorization is a symplectic invariant.
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Reconstructing a symplectic 4-manifold

Algebraic data characterizing a branched covering :

1. Braid factorization �2 =
Q
QiX

di
1 Q

�1
i :

2. Geometric monodromy representation

� : �1(C P
2 �D)� SN :

�1(C P
2 � D) is generated by �geometric generators�

(i)1�i�n ; relations given by the braid factorization.

?�C P
1

C P
2

D

q q q

q q

q

i

� maps geometric generators to transpositions.

cusp ) (12)(23), node ) (12)(34).

Theorem 5. The braid factorization �2 determines D

up to smooth isotopy ; D and � determine (X;!) up

to symplectic isotopy.
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Branched coverings and
Lefschetz pencils

(X4; !)
�

�
�	

@
@
@R

(Donaldson)

Symplectic Lefschetz
pencil

Branched covering

?�C P
1

C P
2 D

q q q

q q

q

?

C P
1

^Xsi

s

�

monodromy = Dehn twist

?

Factorization in the Factorization in the

mapping class group braid group

Id =
Q

i ti �2 =
Q

iQiX
di
1 Q

�1
i

+ monodromy repn. �.

6

?
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Branched coverings and
Lefschetz pencils

1. By forgetting one of the components (i.e. projecting

to C P 1), a branched covering becomes a symplectic

Lefschetz pencil.

) alternate proof of Donaldson's result.

2. � : �1(C P
2 � D) ! SN determines a subgroup

B0
n(�) � Bn and a group homomorphism

�� : B
0
n(�)! Mapg:

B0
n(�) contains the image of the braid monodromy.

� the factors of degree �2 or 3 lie in the kernel of ��.

� �� maps the factors of degree 1 to Dehn twists.

r r

half-twist

-
�

��
�!

r r

Dehn twist along
a lift of 



) �2 and � allow the explicit computation of the

monodromy of the corresponding Lefschetz pencil.
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