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Abstract. We show that every compact symplectic 4-manifold X can

be topologically realized as a covering of CP2 branched along a smooth

symplectic curve inX which projects as an immersed curve with cusps in

CP
2. Furthermore, the covering map can be chosen to be approximately

pseudo-holomorphic with respect to any given almost-complex structure

on X.

1. Introduction

It has recently been shown by Donaldson [3] that the existence of ap-

proximately holomorphic sections of very positive line bundles over com-

pact symplectic manifolds allows the construction not only of symplectic

submanifolds ([2], see also [1],[5]) but also of symplectic Lefschetz pencil

structures. The aim of this paper is to show how similar techniques can be

applied in the case of 4-manifolds to obtain maps to C P2, thus proving that

every compact symplectic 4-manifold is topologically a (singular) branched

covering of C P2.

Let (X;!) be a compact symplectic 4-manifold such that the cohomol-

ogy class 1

2� [!] 2 H2(X;R) is integral. This integrality condition does not

restrict the di�eomorphism type of X in any way, since starting from an ar-

bitrary symplectic structure one can always perturb it so that 1

2�
[!] becomes

rational, and then multiply ! by a constant factor to obtain integrality. A

compatible almost-complex structure J on X and the corresponding Rie-

mannian metric g are also �xed.

Let L be the complex line bundle on X whose �rst Chern class is c1(L) =
1

2�
[!]. Fix a Hermitian structure on L, and let rL be a Hermitian con-

nection on L whose curvature 2-form is equal to �i! (it is clear that such

a connection always exists). The key observation is that, for large values

of an integer parameter k, the line bundles Lk admit many approximately

holomorphic sections, thus making it possible to obtain sections which have

nice transversality properties.

For example, one such section can be used to de�ne an approximately

holomorphic symplectic submanifold in X [2]. Similarly, constructing two

sections satisfying certain transversality requirements yields a Lefschetz pen-

cil structure [3]. In our case, the aim is to construct, for large enough k,

three sections s0k, s
1

k and s
2

k of L
k satisfying certain transversality properties,

in such a way that the three sections do not vanish simultaneously and that

the map from X to C P2 de�ned by x 7! [s0k(x) : s
1

k(x) : s
2

k(x)] is a branched

covering.
1
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Let us now describe more precisely the notion of approximately holomor-

phic singular branched covering. Fix a constant � > 0, and let U be a

neighborhood of a point x in an almost-complex 4-manifold. We say that a

local complex coordinate map � : U ! C 2 is �-approximately holomorphic if,

at every point, j��J � J0j � �, where J0 is the canonical complex structure

on C 2 . Another equivalent way to state the same property is the bound

j�@�(u)j � �jr�(u)j for every tangent vector u.

De�nition 1. A map f : X ! C P
2 is locally �-holomorphically modelled

at x on a map g : C 2 ! C 2 if there exist neighborhoods U of x in X and

V of f(x) in C P
2, and �-approximately holomorphic C1 coordinate maps

� : U ! C 2 and  : V ! C 2 such that f =  �1 Æ g Æ � over U .

De�nition 2. A map f : X ! C P
2 is an �-holomorphic singular covering

branched along a submanifold R � X if its di�erential is surjective every-

where except at the points of R, where rank(df) = 2, and if at any point

x 2 X it is locally �-holomorphically modelled on one of the three following

maps :

(i) local di�eomorphism : (z1; z2) 7! (z1; z2) ;

(ii) branched covering : (z1; z2) 7! (z2
1
; z2) ;

(iii) cusp covering : (z1; z2) 7! (z3
1
� z1z2; z2).

In particular it is clear that the cusp model occurs only in a neighborhood

of a �nite set of points C � R, and that the branched covering model occurs

only in a neighborhood of R (away from C), while f is a local di�eomorphism
everywhere outside of a neighborhood of R. Moreover, the set of branch

pointsR and its projection f(R) can be described as follows in the local mod-

els : for the branched covering model, R = f(z1; z2); z1 = 0g and f(R) =

f(x; y); x = 0g ; for the cusp covering model, R = f(z1; z2); 3z21 � z2 = 0g
and f(R) = f(x; y); 27x2 � 4y3 = 0g.
It follows that, if � < 1, R is a smooth 2-dimensional submanifold in X,

approximately J-holomorphic, and therefore symplectic, and that f(R) is an

immersed symplectic curve in C P
2 except for a �nite number of cusps.

We now state our main result :

Theorem 1. For any � > 0 there exists an �-holomorphic singular covering

map f : X ! C P
2.

The techniques involved in the proof of this result are similar to those

introduced by Donaldson in [2] : the �rst ingredient is a local transversal-

ity result stating roughly that, given approximately holomorphic sections of

certain bundles, it is possible to ensure that they satisfy certain transversal-

ity estimates over a small ball in X by adding to them small and localized

perturbations. The other ingredient is a globalization principle, which, if

the small perturbations providing local transversality are suÆciently well

localized, ensures that a transversality estimate can be obtained over all of

X by combining the local perturbations.

We now de�ne more precisely the notions of approximately holomorphic

sections and of transversality with estimates. We will be considering se-

quences of sections of complex vector bundles Ek over X, for all large values

of the integer k, where each of the bundles Ek carries naturally a Hermitian
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metric and a Hermitian connection. These connections together with the

almost complex structure J on X yield @ and �@ operators on Ek. Moreover,

we choose to rescale the metric on X, and use gk = k g : for example, the

diameter of X is multiplied by k1=2, and all derivatives of order p are divided

by kp=2. The reason for this rescaling is that the vector bundles Ek we will

consider are derived from Lk, on which the natural Hermitian connection

induced by rL has curvature �ik!.
De�nition 3. Let (sk)k�0 be a sequence of sections of complex vector bun-

dles Ek over X. The sections sk are said to be asymptotically holomorphic

if there exist constants (Cp)p2N such that, for all k and at every point of X,

jskj � C0, jrpskj � Cp and jrp�1 �@skj � Cpk
�1=2 for all p � 1, where the

norms of the derivatives are evaluated with respect to the metrics gk = k g.

De�nition 4. Let sk be a section of a complex vector bundle Ek, and let

� > 0 be a constant. The section sk is said to be �-transverse to 0 if,

at any point x 2 X where jsk(x)j < �, the covariant derivative rsk(x) :
TxX ! (Ek)x is surjective and has a right inverse of norm less than ��1

w.r.t. the metric gk.

We will often say that a sequence (sk)k�0 of sections of Ek is transverse

to 0 (without precising the constant) if there exists a constant � > 0 inde-

pendent of k such that �-transversality to 0 holds for all large k.

In this de�nition of transversality, two cases are of speci�c interest. First,

when Ek is a line bundle, and if one assumes the sections to be asymptoti-

cally holomorphic, transversality to 0 can be equivalently expressed by the

property

8x 2 X; jsk(x)j < � ) jrsk(x)jgk > �:

Next, when Ek has rank greater than 2 (or more generally than the complex

dimension of X), the property actually means that jsk(x)j � � for all x 2 X.

An important point to keep in mind is that transversality to 0 is an open

property : if s is �-transverse to 0, then any section � such that js��jC1 < �

is (� � �)-transverse to 0.

The interest of such a notion of transversality with estimates is made clear

by the following observation :

Lemma 1. Let k be asymptotically holomorphic sections of vector bundles

Ek over X, and assume that the sections k are transverse to 0. Then, for

large enough k, the zero set of k is a smooth symplectic submanifold in X.

This lemma follows from the observation that, where k vanishes, j�@kj =
O(k�1=2) by the asymptotic holomorphicity property while @k is bounded

from below by the transversality property, thus ensuring that for large

enough k the zero set is smooth and symplectic, and even asymptotically

J-holomorphic.

We can now write our second result, which is a one-parameter version of

Theorem 1 :

Theorem 2. Let (Jt)t2[0;1] be a family of almost-complex structures on X

compatible with !. Fix a constant � > 0, and let (st;k)t2[0;1];k�0 be asymp-

totically Jt-holomorphic sections of C 3 
Lk, such that the sections st;k and

their derivatives depend continuously on t.
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Then, for all large enough values of k, there exist asymptotically Jt-

holomorphic sections �t;k of C 3 
 Lk, nowhere vanishing, depending con-

tinuously on t, and such that, for all t 2 [0; 1], j�t;k � st;kjC3;gk � � and

the map X ! C P
2 de�ned by �t;k is an approximately holomorphic singular

covering with respect to Jt.

Note that, although we allow the almost-complex structure on X to de-

pend on t, we always use the same metric gk = k g independently of t.

Therefore, there is no special relation between gk and Jt. However, since

the parameter space [0; 1] is compact, we know that the metric de�ned by

! and Jt di�ers from g by at most a constant factor, and therefore up to a

change in the constants this has no real inuence on the transversality and

holomorphicity properties.

We now describe more precisely the properties of the approximately holo-

morphic singular coverings constructed in Theorems 1 and 2, in order to

state a uniqueness result for such coverings.

De�nition 5. Let sk be nowhere vanishing asymptotically holomorphic sec-

tions of C 3 
 Lk. De�ne the corresponding projective maps fk = Psk
from X to C P

2 by fk(x) = [s0k(x) : s1k(x) : s2k(x)]. De�ne the (2; 0)-

Jacobian Jac(fk) = det(@fk), which is a section of �2;0T �X
f�k�2;0T C P2 =
KX 
 L3k. Finally, de�ne R(sk) to be the set of points of X where Jac(fk)

vanishes, i.e. where @fk is not surjective.

Given a constant  > 0, we say that sk satis�es the transversality property

P3() if jskj �  and j@fkjgk �  at every point of X, and if Jac(fk) is -

transverse to 0.

If sk satis�es P3() for some  > 0 and if k is large enough, then it

follows from Lemma 1 that R(sk) is a smooth symplectic submanifold in

X. By analogy with the expected properties of the set of branch points, it

is therefore natural to require such a property for the sections which de�ne

our covering maps.

Furthermore, recall that one expects the projection to C P
2 of the set

of branch points to be an immersed curve except at only �nitely many

non-degenerate cusps. Forget temporarily the antiholomorphic derivative
�@fk, and consider only the holomorphic part. Then the cusps correspond

to the points of R(sk) where the kernel of @fk and the tangent space to

R(sk) coincide (in other words, the points where the tangent space to R(sk)

becomes \vertical"). Since R(sk) is the set of points where Jac(fk) = 0, the

cusp points are those where the quantity @fk ^ @Jac(fk) vanishes.
Note that, along R(sk), @fk has complex rank 1 and so is actually a

nowhere vanishing (1; 0)-form with values in the rank 1 subbundle Im @fk �
f�kT C P

2. In a neighborhood of R(sk), this is no longer true, but one can

project @fk onto a rank 1 subbundle in f�kT C P
2, thus obtaining a nonvan-

ishing (1; 0)-form �(@fk) with values in a line bundle. Cusp points are then

characterized in R(sk) by the vanishing of �(@fk)^@Jac(fk), which is a sec-
tion of a line bundle. Therefore, it is natural to require that the restriction

to R(sk) of this last quantity be transverse to 0, since it implies that the

cusp points are isolated and in some sense non-degenerate.
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It is worth noting that, up to a change of constants in the estimates, this

transversality property is actually independent of the choice of the subbundle

of f�kT C P
2 on which one projects @fk, as long as �(@fk) remains bounded

from below.

For convenience, we introduce the following notations :

De�nition 6. Let sk be asymptotically holomorphic sections of C 3 
 Lk

and fk = Psk. Assume that sk satis�es P3() for some  > 0. Con-

sider the rank one subbundle (Im @fk)jR(sk) of f�kT C P
2 over R(sk), and

de�ne L(sk) to be its extension over a neighborhood of R(sk) as a sub-

bundle of f�kT C P
2, constructed by radial parallel transport along directions

normal to R(sk). Finally, de�ne, over the same neighborhood of R(sk),

T (sk) = �(@fk) ^ @Jac(fk), where � : f�kT C P
2 ! L(sk) is the orthogonal

projection.

We say that asymptotically holomorphic sections sk of C 3 
 Lk are -

generic if they satisfy P3() and if the restriction to R(sk) of T (sk) is -

transverse to 0 over R(sk). We then de�ne the set of cusp points C(sk) as
the set of points of R(sk) where T (sk) = 0.

In a holomorphic setting, such a genericity property would be suÆcient

to ensure that the map fk = Psk is a singular branched covering. How-

ever, in our case, extra diÆculties arise because we only have approximately

holomorphic sections. This means that at a point of R(sk), although @fk
has rank 1, we have no control over the rank of �@fk, and the local picture

may be very di�erent from what one expects. Therefore, we need to control

the antiholomorphic part of the derivative along the set of branch points by

adding the following requirement :

De�nition 7. Let sk be -generic asymptotically J-holomorphic sections

of C 3 
 Lk. We say that sk is �@-tame if there exist constants (Cp)p2N and

c > 0, depending only on the geometry of X and the bounds on sk and its

derivatives, and an !-compatible almost complex structure ~Jk, such that the

following properties hold :

(1) 8p 2 N, jrp( ~Jk � J)jgk � Cpk
�1=2 ;

(2) the almost-complex structure ~Jk is integrable over the set of points

whose gk-distance to C ~Jk(sk) is less than c (the subscript indicates that one

uses @ ~Jk rather than @J to de�ne C(sk)) ;
(3) the map fk = Psk is ~Jk-holomorphic at every point of X whose gk-

distance to C ~Jk(sk) is less than c ;
(4) at every point of R ~Jk

(sk), the antiholomorphic derivative �@ ~Jk(Psk)

vanishes over the kernel of @ ~Jk(Psk).

Note that since ~Jk is within O(k�1=2) of J , the notions of asymptotic J-

holomorphicity and asymptotic ~Jk-holomorphicity actually coincide, because

the @ and �@ operators di�er only by O(k�1=2). Furthermore, if k is large

enough, then -genericity for J implies 0-genericity for ~Jk as well for some

0 slightly smaller than  ; and, because of the transversality properties, the

sets R ~Jk
(sk) and C ~Jk(sk) lie within O(k

�1=2) of RJ(sk) and CJ(sk).
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In the case of families of sections depending continuously on a parameter

t 2 [0; 1], it is natural to also require that the almost complex structures ~Jt;k
close to Jt for every t depend continuously on t. We claim the following :

Theorem 3. Let sk be asymptotically J-holomorphic sections of C 3 
 Lk.

Assume that the sections sk are -generic and �@-tame. Then, for all large

enough values of k, the maps fk = Psk are �k-holomorphic singular branched

coverings, for some constants �k = O(k�1=2).

Therefore, in order to prove Theorems 1 and 2 it is suÆcient to construct

-generic and �@-tame sections (resp. one-parameter families of sections) of

C 3 
 Lk. Even better, we have the following uniqueness result for these

particular singular branched coverings :

Theorem 4. Let s0;k and s1;k be sections of C 3 
 Lk, asymptotically holo-

morphic with respect to !-compatible almost-complex structures J0 and J1
respectively. Assume that s0;k and s1;k are -generic and �@-tame. Then

there exist almost-complex structures (Jt)t2[0;1] interpolating between J0 and

J1, and a constant � > 0, with the following property : for all large enough k,

there exist sections (st;k)t2[0;1];k�0 of C
3 
Lk interpolating between s0;k and

s1;k, depending continuously on t, which are, for all t 2 [0; 1], asymptotically

Jt-holomorphic, �-generic and �@-tame with respect to Jt.

In particular, for large k the approximately holomorphic singular branched

coverings Ps0;k and Ps1;k are isotopic among approximately holomorphic

singular branched coverings.

Therefore, there exists for all large k a canonical isotopy class of singular

branched coverings X ! C P
2, which could potentially be used to de�ne

symplectic invariants of X.

The remainder of this article is organized as follows : x2 describes the

process of perturbing asymptotically holomorphic sections of bundles of rank

greater than 2 to make sure that they remain away from zero. x3 deals with
further perturbation in order to obtain -genericity. x4 describes a way of

achieving �@-tameness, and therefore completes the proofs of Theorems 1, 2

and 4. Finally, Theorem 3 is proved in x5, and x6 deals with various related

remarks.

Acknowledgments. The author wishes to thank Misha Gromov for

valuable suggestions and comments, and Christophe Margerin for helpful

discussions.

2. Nowhere vanishing sections

2.1. Non-vanishing of sk. Our strategy to prove Theorem 1 is to start

with given asymptotically holomorphic sections sk (for example sk = 0)

and perturb them in order to obtain the required properties ; the proof of

Theorem 2 then relies on the same arguments, with the added diÆculty that

all statements must apply to 1-parameter families of sections.

The �rst step is to ensure that the three components s0k, s
1

k and s2k do

not vanish simultaneously, and more precisely that, for some constant � > 0

independent of k, the sections sk are �-transverse to 0, i.e. jskj � � over all
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of X. Therefore, the �rst ingredient in the proof of Theorems 1 and 2 is the

following result :

Proposition 1. Let (sk)k�0 be asymptotically holomorphic sections of

C 3 
 Lk, and �x a constant � > 0. Then there exists a constant � > 0

such that, for all large enough values of k, there exist asymptotically holo-

morphic sections �k of C 3
Lk such that j�k�skjC3;gk
� � and that j�kj � �

at every point of X. Moreover, the same statement holds for families of

sections indexed by a parameter t 2 [0; 1].

Proposition 1 is a direct consequence of the main theorem in [1], where

it is proved that, given any complex vector bundle E, asymptotically holo-

morphic sections of E
Lk (or 1-parameter families of such sections) can be

made transverse to 0 by small perturbations : Proposition 1 follows simply

by considering the case where E is the trivial bundle of rank 3. However,

for the sake of completeness and in order to introduce tools which will also

be used in later parts of the proof, we give here a shorter argument dealing

with the speci�c case at hand.

There are three ingredients in the proof of Proposition 1. The �rst one is

the existence of many localized asymptotically holomorphic sections of the

line bundle Lk for suÆciently large k.

De�nition 8. A section s of a vector bundle Ek has Gaussian decay in

Cr norm away from a point x 2 X if there exists a polynomial P and a

constant � > 0 such that for all y 2 X, js(y)j, jrs(y)jgk , : : : , jrrs(y)jgk
are all bounded by P (d(x; y)) exp(�� d(x; y)2), where d(:; :) is the distance

induced by gk.

The decay properties of a family of sections are said to be uniform if there

exist P and � such that the above bounds hold for all sections of the family,

independently of k and of the point x at which decay occurs for a given

section.

Lemma 2 ([2],[1]). Given any point x 2 X, for all large enough k, there

exist asymptotically holomorphic sections srefk;x of Lk over X satisfying the

following bounds : jsrefk;xj � cs at every point of the ball of gk-radius 1 centered

at x, for some universal constant cs > 0 ; and the sections srefk;x have uniform

Gaussian decay away from x in C3 norm.

Moreover, given a one-parameter family of !-compatible almost-complex

structures (Jt)t2[0;1], there exist one-parameter families of sections sreft;k;x
which are asymptotically Jt-holomorphic for all t, depend continuously on t

and satisfy the same bounds.

The �rst part of this statement is Proposition 11 of [2], while the extension

to one-parameter families is carried out in Lemma 3 of [1]. Note that here we

require decay with respect to the C3 norm instead of C0, but the bounds on

all derivatives follow immediately from the construction of these sections :

indeed, they are modelled on f(z) = exp(�jzj2=4) in a local approximately

holomorphic Darboux coordinate chart for k! at x and in a suitable lo-

cal trivialization of Lk where the connection 1-form is 1

4

P
(zjd�zj � �zjdzj).

Therefore, it is suÆcient to notice that the model function has Gaussian
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decay and that all derivatives of the coordinate map are uniformly bounded

because of the compactness of X.

More precisely, the result of existence of local approximately holomorphic

Darboux coordinate charts needed for Lemma 2 (and throughout the proofs

of the main theorems as well) is the following (see also [2]) :

Lemma 3. Near any point x 2 X, for any integer k, there exist local

complex Darboux coordinates (z1k; z
2

k) : (X;x) ! (C 2 ; 0) for the symplectic

structure k! (i.e. such that the pullback of the standard symplectic struc-

ture of C 2 is k!) such that, denoting by  k : (C 2 ; 0) ! (X;x) the in-

verse of the coordinate map, the following bounds hold uniformly in x and

k : jz1k(y)j + jz2k(y)j = O(distgk(x; y)) on a ball of �xed radius around x ;

jrr kjgk = O(1) for all r � 1 on a ball of �xed radius around 0 ; and, with

respect to the almost-complex structure J on X and the canonical complex

structure J0 on C 2 , j�@ k(z)jgk = O(k�1=2jzj) and jrr �@ jgk = O(k�1=2) for

all r � 1 on a ball of �xed radius around 0.

Moreover, given a continuous 1-parameter family of !-compatible almost-

complex structures (Jt)t2[0;1] and a continuous family of points (xt)t2[0;1],

one can �nd for all t coordinate maps near xt satisfying the same estimates

and depending continuously on t.

Proof. By Darboux's theorem, there exists a local symplectomorphism �

from a neighborhood of 0 in C 2 with its standard symplectic structure to a

neighborhood of x in (X;!). It is well-known that the space of symplectic

R-linear endomorphisms of C 2 which intertwine the complex structures J0
and ��J(x) is non-empty (and actually isomorphic to U(2)). So, choosing

such a linear map 	 and de�ning  = � Æ	, one gets a local symplectomor-
phism such that �@ (0) = 0. Moreover, because of the compactness of X, it

is possible to carry out the construction in such a way that, with respect to

the metric g, all derivatives of  are bounded over a neighborhood of x by

uniform constants which do not depend on x. Therefore, over a neighbor-

hood of x one can assume that jr( �1)jg = O(1), as well as jrr jg = O(1)

and jrr �@ jg = O(1) 8r � 1.

De�ne  k(z) =  (k�1=2z), and switch to the metric gk : then �@ k(0) = 0,

and at every point near x, jr( �1k )jgk = jr( �1)jg = O(1). Moreover,

jrr kjgk = O(k(1�r)=2) = O(1) and jrr �@ kjgk = O(k�r=2) = O(k�1=2) for

all r � 1. Finally, since jr�@ kjgk = O(k�1=2) and �@ k(0) = 0 we have

j�@ k(z)jgk = O(k�1=2jzj), so that all expected estimates hold. Because of

the compactness of X, the estimates are uniform in x, and because the maps

 k for di�erent values of k di�er only by a rescaling, the estimates are also

uniform in k.

In the case of a one-parameter family of almost-complex structures, there

is only one thing to check in order to carry out the same construction for ev-

ery value of t 2 [0; 1] while ensuring continuity in t : given a one-parameter

family of local Darboux maps �t near xt (the existence of such maps de-

pending continuously on t is trivial), one must check the existence of a

continuous one-parameter family of R-linear symplectic endomorphisms 	t

of C 2 intertwining the complex structures J0 and �
�
tJt(xt) on C 2 . To prove

this, remark that for every t the set of these endomorphisms of C 2 can be
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identi�ed with the group U(2). Therefore, what we are looking for is a con-

tinuous section (	t)t2[0;1] of a principal U(2)-bundle over [0; 1]. Since [0; 1] is

contractible, this bundle is necessarily trivial and therefore has a continuous

section. This proves the existence of the required maps 	t, so one can de�ne

 t = �t Æ 	t, and set  t;k(z) =  t(k
�1=2z) as above. The expected bounds

follow naturally ; the estimates are uniform in t because of the compactness

of [0; 1].

The second tool we need for Proposition 1 is the following local transver-

sality result, which involves ideas similar to those in [2] and in x2 of [1] but
applies to maps from C n to Cm with m > n rather than m = 1 :

Proposition 2. Let f be a function de�ned over the ball B+ of radius 11

10

in C n with values in Cm , with m > n. Let Æ be a constant with 0 < Æ < 1

2
,

and let � = Æ log(Æ�1)�p where p is a suitable �xed integer depending only

on the dimension n. Assume that f satis�es the following bounds over B+ :

jf j � 1; j�@f j � �; jr�@f j � �:

Then, there exists w 2 Cm , with jwj � Æ, such that jf � wj � � over the

interior ball B of radius 1.

Moreover, if one considers a one-parameter family of functions (ft)t2[0;1]
satisfying the same bounds, then one can �nd for all t elements wt 2 Cm

depending continuously on t such that jwtj � Æ and jft � wtj � � over B.

This statement is proved in x2.3. The last, and most crucial, ingredient

of the proof of Proposition 1 is a globalization principle due to Donaldson

[2] which we state here in a general form.

De�nition 9. A family of properties P(�; x)x2X;�>0 of sections of bundles

over X is local and Cr-open if, given a section s satisfying P(�; x), any

section � such that j�(x)� s(x)j, jr�(x)�rs(x)j, : : : , jrr�(x)�rrs(x)j
are smaller than � satis�es P(��C�; x), where C is a constant (independent

of x and �).

For example, the property js(x)j � � is local and C0-open ; �-transversality

to 0 of s at x is local and C1-open.

Proposition 3 ([2]). Let P(�; x)x2X;�>0 be a local and Cr-open family of

properties of sections of vector bundles Ek over X. Assume that there exist

constants c, c0 and p such that, given any x 2 X, any small enough Æ > 0,

and asymptotically holomorphic sections sk of Ek, there exist, for all large

enough k, asymptotically holomorphic sections �k;x of Ek with the following

properties : (a) j�k;xjCr;gk < Æ, (b) the sections 1

Æ
�k;x have uniform Gaussian

decay away from x in Cr-norm, and (c) the sections sk + �k;x satisfy the

property P(�; y) for all y 2 Bgk(x; c), with � = c0Æ log(Æ�1)�p.

Then, given any � > 0 and asymptotically holomorphic sections sk of Ek,

there exist, for all large enough k, asymptotically holomorphic sections �k of

Ek such that jsk � �kjCr;gk < � and the sections �k satisfy P(�; x) 8x 2 X
for some � > 0 independent of k.

Moreover the same result holds for one-parameter families of sections,

provided the existence of sections �t;k;x satisfying properties (a), (b), (c) and

depending continuously on t 2 [0; 1].
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This result is a general formulation of the argument contained in x3 of

[2] (see also [1], x3.3 and 3.5). For the sake of completeness, let us recall

just a brief outline of the construction. To achieve property P over all of

X, the idea is to proceed iteratively : in step j, one starts from sections s
(j)

k

satisfying P(Æj ; x) for all x in a certain (possibly empty) subset U
(j)
k � X,

and perturbs them by less than 1

2C Æj (where C is the same constant as in

De�nition 9) to get sections s
(j+1)

k satisfying P(Æj+1; x) over certain balls

of gk-radius c, with Æj+1 = c0(
Æj
2C
) log((

Æj
2C
)�1)�p. Because the property P

is open, s
(j+1)
k also satis�es P(Æj+1; x) over U (j)

k , therefore allowing one to

obtain P everywhere after a certain number N of steps.

The catch is that, since the value of Æj decreases after each step and

we want P(�; x) with � independent of k, the number of steps needs to

be bounded independently of k. However, the size of X for the metric gk
increases as k increases, and the number of balls of radius c needed to cover

X therefore also increases. The key observation due to Donaldson [2] is

that, because of the Gaussian decay of the perturbations, if one chooses a

suÆciently large constant D, one can in a single step carry out perturbations

centered at as many points as one wants, provided that any two of these

points are distant of at least D with respect to gk : the idea is that each

of the perturbations becomes suÆciently small in the vicinity of the other

perturbations in order to have no inuence on property P there (up to

a slight decrease of Æj+1). Therefore the construction is possible with a

bounded number of steps N and yields property P(�; x) for all x 2 X and

for all large enough k, with � = ÆN independent of k.

We now show how to derive Proposition 1 from Lemma 2 and Propositions

2 and 3, following the ideas contained in [2]. Proposition 1 follows directly

from Proposition 3 by considering the property P de�ned as follows : say

that a section sk of C
3 
 Lk satis�es P(�; x) if jsk(x)j � �. This property is

local and open in C0-sense, and therefore also in C3-sense. So it is suÆcient

to check that the assumptions of Proposition 3 hold for P.
Let x 2 X, 0 < Æ < 1

2
, and consider asymptotically holomorphic sections

sk of C
3
Lk (or 1-parameter families of sections st;k). Recall that Lemma 2

provides asymptotically holomorphic sections srefk;x of Lk which have Gauss-

ian decay away from x and remain larger than a constant cs over Bgk(x; 1).

Therefore, dividing sk by srefk;x yields asymptotically holomorphic functions

uk on Bgk(x; 1) with values in C 3 . Next, one uses a local approximately

holomorphic coordinate chart as given by Lemma 3 to obtain, after com-

posing with a �xed dilation of C 2 if necessary, functions vk de�ned on the

ball B+ � C 2 , with values in C 3 , and satisfying the estimates jvkj = O(1),

j�@vkj = O(k�1=2) and jr�@vkj = O(k�1=2).

Let C0 be a constant bounding jsrefk;xjC3;gk , and let � = Æ
C0

log(( Æ
C0
)�1)�p.

Provided that k is large enough, Proposition 2 yields constants wk 2 C 3 ,

with jwkj � Æ
C0
, such that jvk�wkj � � over the unit ball in C 2 . Equivalently,

one has juk � wkj � � over Bgk(x; c) for some constant c. Multiplying by

srefk;x again, one gets that jsk � wk s
ref

k;xj � cs� over Bgk(x; c).
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The assumptions of Proposition 3 are therefore satis�ed if one chooses

� = cs� (larger than c0Æ log(Æ�1)�p for a suitable constant c0 > 0) and �k;x =

�wk s
ref

k;x. Moreover, the same argument applies to one-parameter families

of sections st;k (one similarly constructs perturbations �t;k;x = �wt;k s
ref

t;k;x).

So Proposition 3 applies, which ends the proof of Proposition 1.

2.2. Non-vanishing of @fk. We have constructed asymptotically holomor-

phic sections sk = (s0k; s
1

k; s
2

k) of C
3 
Lk for all large enough k which remain

away from zero. Therefore, the maps fk = Psk from X to C P
2 are well de-

�ned, and they are asymptotically holomorphic, because the lower bound on

jskj implies that the derivatives of fk are O(1) and that �@fk and its deriva-

tives are O(k�1=2) (taking the metric gk on X and the standard metric on

C P
2). Our next step is to ensure, by further perturbation of the sections sk,

that @fk vanishes nowhere and remains far from zero :

Proposition 4. Let Æ and  be two constants such that 0 < Æ < 
4
, and

let (sk)k�0 be asymptotically holomorphic sections of C 3 
 Lk such that

jskj �  at every point of X and for all k. Then there exists a constant

� > 0 such that, for all large enough values of k, there exist asymptotically

holomorphic sections �k of C 3 
Lk such that j�k� skjC3;gk
� Æ and that the

maps fk = P�k satisfy the bound j@fkjgk � � at every point of X. Moreover,

the same statement holds for families of sections indexed by a parameter

t 2 [0; 1].

Proposition 4 is proved in the same manner as Proposition 1 and uses

the same three ingredients, namely Lemma 2 and Propositions 2 and 3.

Proposition 4 follows directly from Proposition 3 by considering the following

property : say that a section s of C 3 
 Lk of norm everywhere larger than

2
satis�es P(�; x) if the map f = Ps satis�es j@f(x)jgk � �. This property

is local and open in C1-sense, and therefore also in C3-sense, because the

lower bound on jsj makes f depend nicely on s (by the way, note that the

bound jsj � 
2
is always satis�ed in our setting since one considers only

sections di�ering from sk by less than 
4
). So one only needs to check that

the assumptions of Proposition 3 hold for this property P.
Therefore, let x 2 X, 0 < Æ < 

4
, and consider nonvanishing asymp-

totically holomorphic sections sk of C 3 
 Lk and the corresponding maps

fk = Psk. Without loss of generality, composing with a rotation in C 3

(constant over X), one can assume that sk(x) is directed along the �rst

component in C 3 , i.e. that s1k(x) = s2k(x) = 0 and therefore js0k(x)j � 
2
.

Because one has a uniform bound on jrskj, there exists a constant r > 0

(independent of k) such that js0kj � 
3
over Bgk(x; r). Therefore, over this

ball one can de�ne a map to C 2 by

hk(y) = (h1k(y); h
2

k(y)) =
�s1k(y)
s0k(y)

;
s2k(y)

s0k(y)

�
:

It is quite easy to see that, at any point y 2 Bgk(x; r), the ratio between

j@hk(y)j and j@fk(y)j is bounded by a uniform constant. Therefore, what

one actually needs to prove is that, for large enough k, a perturbation of

sk with Gaussian decay and smaller than Æ can make j@hkj larger than

� = c0Æ (log Æ�1)�p over a ball Bgk(x; c), for some constants c, c
0 and p.
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Recall that Lemma 2 provides asymptotically holomorphic sections srefk;x
of Lk which have Gaussian decay away from x and remain larger than a

constant cs over Bgk(x; 1). Moreover, consider a local approximately holo-

morphic coordinate chart (as given by Lemma 3) on a neighborhood of x,

and call z1k and z2k the two complex coordinate functions. De�ne the two

1-forms

�1k = @
�z1ksrefk;x

s0k

�
and �2k = @

�z2ksrefk;x
s0k

�
;

and notice that at x they are both of norm larger than a �xed constant

(which can be expressed as a function of cs and the uniform C0 bound

on sk), and mutually orthogonal. Moreover �1k, �
2

k and their derivatives

are uniformly bounded because of the bounds on srefk;x, on s0k and on the

coordinate map ; these bounds are independent of k. Finally, �1k and �
2

k are

asymptotically holomorphic because all the ingredients in their de�nition

are asymptotically holomorphic and js0kj is bounded from below.

If follows that, for some constant r0, one can express @hk on the ball

Bgk(x; r
0) as (@h1k; @h

2

k) = (u11k �
1

k + u12k �
2

k; u
21

k �
1

k + u22k �
2

k), thus de�ning a

function uk on Bgk(x; r
0) with values in C 4 . The properties of �ik described

above imply that the ratio between j@hkj and jukj is bounded between two

constants which do not depend on k (because of the bounds on �1k and �2k,

and of their orthogonality at x), and that the map uk is asymptotically

holomorphic (because of the asymptotic holomorphicity of �ik).

Next, one uses the local approximately holomorphic coordinate chart to

obtain from uk, after composing with a �xed dilation of C 2 if necessary,

functions vk de�ned on the ball B+ � C 2 , with values in C 4 , and satisfying

the estimates jvkj = O(1), j�@vkj = O(k�1=2) and jr�@vkj = O(k�1=2). Let

C0 be a constant larger than jziksrefk;xjC3;gk
, and let � = Æ

4C0
: log(( Æ

4C0
)�1)�p.

Then, by Proposition 2, for all large enough k there exist constants wk =

(w11

k ; w
12

k ; w
21

k ; w
22

k ) 2 C 4 , with jwkj � Æ
4C0

, such that jvk �wkj � � over the

unit ball in C 2 .

Equivalently, one has juk � wkj � � over Bgk(x; c) for some constant c.

Multiplying by �ik, one therefore gets that, over Bgk(x; c),�����
 
@
�
h1k �w11

k

z1ks
ref

k;x

s0k
� w12

k

z2ks
ref

k;x

s0k

�
; @
�
h2k � w21

k

z1ks
ref

k;x

s0k
� w22

k

z2ks
ref

k;x

s0k

�!����� � �

C

where C is a �xed constant determined by the bounds on �ik. In other terms,

letting

(�0k;x; �
1

k;x; �
2

k;x) = (0;�(w11

k z
1

k +w12

k z
2

k)s
ref

k;x;�(w21

k z
1

k + w22

k z
2

k)s
ref

k;x);

and de�ning ~hk similarly to hk starting with sk+�k;x instead of sk, the above

formula can be rewritten as j@~hkj � �
C
. Therefore, one has managed to make

j@~hkj larger than � = �
C
over Bgk(x; c) by adding to sk the perturbation �k;x.

Moreover, j�k;xj �
P jwij

k j:jziksrefk;xj � Æ, and the sections ziks
ref

k;x have uniform

Gaussian decay away from x.

As remarked above, setting ~fk = P(sk + �k;x), the bound j@~hkj � � im-

plies that j@ ~fkj is larger than some �0 di�ering from � by at most a con-

stant factor. The assumptions of Proposition 3 are therefore satis�ed, since
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one has �0 � c0Æ log(Æ�1)�p for a suitable constant c0 > 0. Moreover, the

whole argument also applies to one-parameter families of sections st;k as well

(considering one-parameter families of coordinate charts, reference sections

sreft;k;x, and constants wt;k). So Proposition 3 applies. This ends the proof of

Proposition 4.

2.3. Proof of Proposition 2. The proof of Proposition 2 goes along the

same lines as that of the local transversality result introduced in [2] and

extended to one-parameter families in [1] (see Proposition 6 below). To

start with, notice that it is suÆcient to prove the result in the case where

m = n + 1. Indeed, given a map f = (f1; : : : ; fm) : B+ ! Cm with

m > n + 1 satisfying the hypotheses of Proposition 2, one can de�ne f 0 =

(f1; : : : ; fn+1) : B+ ! C n+1 , and notice that f 0 also satis�es the required

bounds. Therefore, if it is possible to �nd w0 = (w1; : : : ; wn+1) 2 C n+1 of

norm at most Æ such that jf 0 � w0j � � over the unit ball B, then setting

w = (w1; : : : ; wn+1; 0; : : : ; 0) 2 Cm one gets jwj = jw0j � Æ and jf � wj �
jf 0 � w0j � � at all points of B, which is the desired result. The same

argument applies to one-parameter families (ft)t2[0;1].

So we are now reduced to the case m = n + 1. Let us start with the

case of a single map f , before moving on to the case of one-parameter

families. The �rst step in the proof is to replace f by a complex polynomial

g approximating f . For this, one approximates each of the n+1 components

f i by a polynomial gi, in such a way that g di�ers from f by at most a �xed

multiple of � over the unit ball B and that the degree d of g is less than a

constant times log(��1). The process is the same as the one described in

[2] for asymptotically holomorphic maps to C , so we skip the details. To

obtain polynomial functions, one �rst constructs holomorphic functions ~f i

di�ering from f i by at most a �xed multiple of �, using the given bounds on
�@f i. The polynomials gi are then obtained by truncating the Taylor series

expansion of ~f i to a given degree. It can be shown that by this method

one can obtain polynomial functions gi of degree less than a constant times

log(��1) and di�ering from ~f i by at most a constant times � (see Lemmas

27 and 28 of [2]). The approximation process does not hold on the whole

ball where f is de�ned ; this is why one needs f to be de�ned on B+ to get

a result over the slightly smaller ball B.

Therefore, we now have a polynomial map g of degree d = O(log(��1))

such that jf � gj � c � for some constant c. In particular, if one �nds

w 2 C n+1 with jwj � Æ such that jg � wj � (c + 1)� over the ball B,

then it follows immediately that jf � wj � � everywhere, which is the de-

sired result. The key observation for �nding such a w is that the image

g(B) � C n+1 is contained in an algebraic hypersurface H in C n+1 of degree

at most D = (n + 1)dn. Indeed, if such were not the case, then for every

nonzero polynomial P of degree at most D in n+1 variables, P (g1; : : : ; gn+1)

would be a non identically zero polynomial function of degree at most dD

in n variables ; since the space of polynomials of degree at most D in n+ 1

variables is of dimension
�
D+n+1
n+1

�
while the space of polynomials of degree

at most dD in n variables is of dimension
�
dD+n
n

�
, the injectivity of the map

P 7! P (g1; : : : ; gn+1) from the �rst space to the second would imply that
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D+n+1
n+1

�
�
�
dD+n
n

�
. However since D = (n+ 1)dn one has�

D+n+1
n+1

�
�
dD+n
n

� =
(n+ 1)dn + (n+ 1)

n+ 1
� D + n

dD + n
� � � D + 1

dD + 1
� (dn+1) �

�
1

d

�n
> 1;

which gives a contradiction. So g(B) � H for a certain hypersurface H �
C n+1 of degree at most D = (n + 1)dn. Therefore the following classical

result of algebraic geometry (see e.g. [4], pp. 11{15) can be used to provide

control on the size of H inside any ball in C n+1 :

Lemma 4. Let H � C n+1 be a complex algebraic hypersurface of degree D.

Then, given any r > 0 and any x 2 C n+1 , the 2n-dimensional volume of

H \ B(x; r) is at most DV0 r
2n, where V0 is the volume of the unit ball of

dimension 2n. Moreover, if x 2 H, then one also has vol2n(H \B(x; r)) �
V0 r

2n.

In particular, we are interested in the intersection of H with the ball

B̂ of radius Æ centered at the origin. Lemma 4 implies that the volume

of this intersection is bounded by (n + 1)V0 d
nÆ2n. Cover B̂ by a �nite

number of balls B(xi; �), in such a way that no point is contained in more

than a �xed constant number (depending only on n) of the balls B(xi; 2�).

Then, for every i such that B(xi; �) \ H is non-empty, B(xi; 2�) contains

a ball of radius � centered at a point of H, so by Lemma 4 the volume of

B(xi; 2�)\H is at least V0 �
2n. Summing the volumes of these intersections

and comparing with the total volume of H \ B̂, one gets that the number of
balls B(xi; �) which meet H is bounded by N = CdnÆ2n��2n, where C is a

constant depending only on n. Therefore, H \ B̂ is contained in the union

of N balls of radius �.

Since our goal is to �nd w 2 B̂ at distance more than (c+1)� of g(B) � H,

the set Z of values which we want to avoid is contained in a set Z+ which

is the union of N = CdnÆ2n��2n balls of radius (c + 2)�. The volume of

Z+ is bounded by C 0dnÆ2n�2 for some constant C 0 depending only on n.

Therefore, there exists a constant C 00 such that, if one assumes Æ to be

larger than C 00dn=2�, the volume of B̂ is strictly larger than that of Z+, and

so B̂�Z+ is not empty. Calling w any element of B̂�Z+, one has jwj � Æ,

and jg � wj � (c + 1)� at every point of B, and therefore jf � wj � � at

every point of B, which is the desired result.

Since d is bounded by a constant times log(��1), it is not hard to see

that there exists an integer p such that, for all 0 < Æ < 1

2
, the relation

� = Æ log(Æ�1)�p implies that Æ > C 00dn=2�. This is the value of p which we

choose in the statement of the proposition, thus ensuring that B̂�Z+ is not

empty and therefore that there exists w with jwj � Æ such that jf �wj � �

at every point of B.

We now consider the case of a one-parameter family of functions (ft)t2[0;1].

The �rst part of the above argument also applies to this case, so there exist

polynomial maps gt of degree d = O(log(��1)), depending continuously on

t, such that jft � gtj � c � for some constant c and for all t. In particular,

if one �nds wt 2 C n+1 with jwtj � Æ and depending continuously on t such

that jgt � wtj � (c + 1)� over the ball B, then it follows immediately that

jft �wtj � � everywhere, which is the desired result.
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As before, gt(B) is contained in a hypersurface of degree at most (n+1)dn

in C n+1 , and the same argument as above implies that the set Zt of values

which we want to avoid for wt (i.e. all the points of B̂ at distance less

than (c + 1)� from gt(B)) is contained in a set Z+

t which is the union of

N = CdnÆ2n��2n balls of radius (c + 2)�. The rest of the proof is now a

higher-dimensional analogue of the argument used in [1] : the crucial point is

to show that, if Æ is large enough, B̂�Z+

t splits into several small connected

components and only one large component, because the boundary Yt = @Z+

t

is much smaller than a (2n + 1)-ball of radius Æ and therefore cannot split

B̂ into components of comparable sizes.

Each component of B̂�Z+

t is delimited by a subset of the sphere @B̂ and

by a union of components of Yt. Each component Yt;i of Yt is a real hyper-

surface in B̂ (with corners at the points where the boundaries of the various

balls of Z+

t intersect) whose boundary is contained in @B̂, and therefore

splits B̂ into two components C 0i and C
00
i . So each component of B̂ � Z+

t is

an intersection of components C 0i or C
00
i where i ranges over a certain subset

of the set of components of Yt. Let us now state the following isoperimetric

inequality :

Lemma 5. Let Y be a connected (singular) submanifold of real codimen-

sion 1 in the unit ball of dimension 2n+ 2, with (possibly empty) boundary

contained in the boundary of the ball. Let A be the (2n+1)-dimensional area

of Y . Then the volume V of the smallest of the two components delimited

by Y in the ball satis�es the bound V � K A(2n+2)=(2n+1), where K is a �xed

constant depending only on the dimension.

Proof. The stereographic projection maps the unit ball quasi-isometrically

onto a half-sphere. Therefore, up to a change in the constant, it is suÆcient

to prove the result on the half-sphere. By doubling Y along its intersec-

tion with the boundary of the half-sphere, which doubles both the volume

delimited by Y and its area, one reduces to the case of a closed connected

(singular) real hypersurface in the sphere S2n+2 (if Y does not meet the

boundary, then it is not necessary to consider the double). Next, one no-

tices that the singular hypersurfaces we consider can be smoothed in such a

way that the area of Y and the volume it delimits are changed by less than

any �xed constant ; therefore, Lemma 5 follows from the classical spherical

isoperimetric inequality (see e.g. [6]).

It follows that, letting Ai be the (2n + 1)-dimensional area of Yt;i, the

smallest of the two components delimited by Yt;i, e.g. C
0
i, has volume Vi �

K A
(2n+2)=(2n+1)
i . Therefore, the volume of the set

S
iC

0
i is bounded by

K
P

iA
(2n+2)=(2n+1)
i � K (

P
iAi)

(2n+2)=(2n+1). However,
P

iAi is the to-

tal area of the boundary Yt of Z
+

t , so it is less than the total area of the

boundaries of the balls composing Z+

t , which is at most a �xed constant

times CdnÆ2n��2n((c+2)�)2n+1 , i.e. at most a �xed constant times dnÆ2n�.

Therefore, one has

vol(
[
i

C 0i) � K 0
�
dn
�

Æ

� 2n+2

2n+1

Æ2n+2
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for some constant K 0 depending only on n. So there exists a constant K 00

depending only on n such that, if Æ > K 00dn�, then vol(
S
i C

0
i) � 1

10
vol(B̂),

and therefore vol(
T
iC

00
i ) � 8

10
vol(B̂).

Since d is bounded by a constant times log(��1), it is not hard to see

that there exists an integer p such that, for all 0 < Æ < 1

2
, the relation

� = Æ log(Æ�1)�p implies that Æ > K 00dn�. This is the value of p which we

choose in the statement of the proposition, thus ensuring that the above

volume bounds on
S
i C

0
i and

T
iC

00
i hold.

Now, recall that every component of B̂ �Z+

t is an intersection of sets C 0i
and C 00i for certain values of i. Therefore, every component of B̂�Z+

t either

is contained in
S
iC

0
i or contains

T
iC

00
i . However, because

S
iC

0
i is much

smaller than the ball B̂, one cannot have B̂�Z+

t � SiC
0
i. Therefore, there

exists a component in B̂�Z+

t containing
S
i C

00
i . Since its volume is at least

8

10
vol(B̂), this large component is necessarily unique.

Let U(t) be the connected component of B̂�Zt which contains the large

component of B̂ � Z+

t : it is the only large component of B̂ � Zt. We now

follow the same argument as in [1]. Since gt(B) depends continuously on

t, so does its (c+ 1)�-neighborhood Zt, and the set
S
tftg � Zt is therefore

a closed subset of [0; 1] � B̂. Let U�(t; �) be the set of all points of U(t)

at distance more than � from Zt [ @B̂. Then, given any t and any small

� > 0, for all � close to t, U(�) contains U�(t; �). To see this, we �rst

notice that, for all � close to t, U�(t; �) \ Z� = ;. Indeed, if such were not

the case, one could take a sequence of points of Z� \ U�(t; �) for � ! t,

and extract a convergent subsequence whose limit belongs to U
�
(t; �) and

therefore lies outside of Zt, in contradiction with the fact that
S
tftg�Zt is

closed. So U�(t; �) � B̂�Z� for all � close enough to t. Making � smaller if

necessary, one may assume that U�(t; �) is connected, so that for all � close

to t, U�(t; �) is necessarily contained in the large component of B̂ � Z� ,

namely U(�).

It follows that U =
S
tftg�U(t) is an open connected subset of [0; 1]� B̂,

and is therefore path-connected. So we get a path s 7! (t(s); w(s)) joining

(0; w(0)) to (1; w(1)) inside U , for any given w(0) and w(1) in U(0) and

U(1). We then only have to make sure that s 7! t(s) is strictly increasing

in order to de�ne wt(s) = w(s).

Getting the t component to increase strictly is not hard. Indeed, one

�rst gets it to be weakly increasing, by considering values s1 < s2 of the

parameter such that t(s1) = t(s2) = t and replacing the portion of the path

between s1 and s2 by a path joining w(s1) to w(s2) in the connected set

U(t). Then, we slightly shift the path, using the fact that U is open, to get

the t component to increase slightly over the parts where it was constant.

Thus we can de�ne wt(s) = w(s) and end the proof of Proposition 2.

3. Transversality of derivatives

3.1. Transversality to 0 of Jac(fk). At this point in the proofs of Theo-

rems 1 and 2, we have constructed for all large k asymptotically holomorphic

sections sk of C 3 
 Lk (or families of sections), bounded away from 0, and
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such that the holomorphic derivative of the map fk = Psk is bounded away

from 0. The next property we wish to ensure by perturbing the sections

sk is the transversality to 0 of the (2; 0)-Jacobian Jac(fk) = det(@fk). The

main result of this section is :

Proposition 5. Let Æ and  be two constants such that 0 < Æ < 
4
, and

let (sk)k�0 be asymptotically holomorphic sections of C 3 
 Lk such that

jskj �  and j@(Psk)jgk �  at every point of X. Then there exists a constant

� > 0 such that, for all large enough values of k, there exist asymptotically

holomorphic sections �k of C 3
Lk such that j�k�skjC3;gk � Æ and Jac(P�k)

is �-transverse to 0. Moreover, the same statement holds for families of

sections indexed by a parameter t 2 [0; 1].

The proof of Proposition 5 uses once more the same techniques and glob-

alization argument as Propositions 1 and 4. The local transversality result

one uses in conjunction with Proposition 3 is now the following statement

for complex valued functions :

Proposition 6 ([2],[1]). Let f be a function de�ned over the ball B+ of

radius 11

10
in C n with values in C . Let Æ be a constant such that 0 < Æ < 1

2
,

and let � = Æ log(Æ�1)�p where p is a suitable �xed integer depending only

on the dimension n. Assume that f satis�es the following bounds over B+ :

jf j � 1; j�@f j � �; jr�@f j � �:

Then there exists w 2 C , with jwj � Æ, such that f � w is �-transverse to 0

over the interior ball B of radius 1, i.e. f � w has derivative larger than �

at any point of B where jf � wj < �.

Moreover, the same statement remains true for a one-parameter family

of functions (ft)t2[0;1] satisfying the same bounds, i.e. for all t one can �nd

elements wt 2 C depending continuously on t such that jwtj � Æ and ft�wt

is �-transverse to 0 over B.

The �rst part of this statement is exactly Theorem 20 of [2], and the

version for one-parameter families is Proposition 3 of [1].

Proposition 5 is proved by applying Proposition 3 to the following prop-

erty : say that a section s of C 3
Lk everywhere larger than 
2
and such that

j@Psj � 
2
everywhere satis�es P(�; x) if Jac(Ps) is �-transverse to 0 at x,

i.e. either jJac(Ps)(x)j � � or jrJac(Ps)(x)j > �. This property is local and

C2-open, and therefore also C3-open, because the lower bound on s makes

Jac(Ps) depend nicely on s. Note that, since one considers only sections

di�ering from sk by less than Æ in C3 norm, decreasing Æ if necessary, one

can safely assume that the two hypotheses jsj � 
2
and j@(Ps)j � 

2
are

satis�ed everywhere by all the sections appearing in the construction of �k.

So one only needs to check that the assumptions of Proposition 3 hold for

the property P de�ned above.

Therefore, let x 2 X, 0 < Æ < 
4
, and consider asymptotically holomorphic

sections sk of C 3 
 Lk and the corresponding maps fk = Psk, such that

jskj � 
2
and j@fkj � 

2
everywhere. The setup is similar to that of x2.2.

Without loss of generality, composing with a rotation in C 3 (constant over

X), one can assume that sk(x) is directed along the �rst component in C 3 ,
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i.e. that s1k(x) = s2k(x) = 0 and therefore js0k(x)j � 
2
. Because of the

uniform bound on jrskj, there exists r > 0 (independent of k) such that

js0kj � 
3
, js1kj < 

3
and js2kj < 

3
over the ball Bgk(x; r). Therefore, over this

ball one can de�ne the map

hk(y) = (h1k(y); h
2

k(y)) =
�s1k(y)
s0k(y)

;
s2k(y)

s0k(y)

�
:

Note that fk is the composition of hk with the map � : (z1; z2) 7!
[1 : z1 : z2] from C 2 to C P

2, which is a quasi-isometry over the unit ball

in C 2 . Therefore, at any point y 2 Bgk(x; r), the bound j@fk(y)j � 
2

implies that j@hk(y)j � 0 for some constant 0 > 0. Moreover, the (2; 0)-

Jacobians Jac(fk) = det(@fk) and Jac(hk) = det(@hk) are related to each

other : Jac(fk)(y) = �(y) Jac(hk)(y), where �(y) is the Jacobian of � at

hk(y). In particular, j�j is bounded between two universal constants over

Bgk(x; r), and r� is also bounded.

Since rJac(hk) = ��1rJac(fk) � ��2Jac(fk)r�, it follows from the

bounds on � that, if Jac(fk) fails to be �-transverse to 0 at y for some

�, i.e. if jJac(fk)(y)j < � and jrJac(fk)(y)j � �, then jJac(hk)(y)j < C�

and jrJac(hk)(y)j � C� for some constant C independent of k and �.

This means that, if Jac(hk) is C�-transverse to 0 at y, then Jac(fk) is �-

transverse to 0 at y. Therefore, what one actually needs to prove is that, for

large enough k, a perturbation of sk with Gaussian decay and smaller than Æ

allows one to obtain the �-transversality to 0 of Jac(hk) over a ball Bgk(x; c),

with � = c0Æ (log Æ�1)�p, for some constants c, c0 and p ; the �
C
-transversality

to 0 of Jac(fk) then follows by the above remark.

Since j@hk(x)j � 0, one can assume, after composing with a rotation in

C 2 (constant over X) acting on the two components (s1k; s
2

k) or equivalently

on (h1k; h
2

k), that j@h2k(x)j � 0

2
. As in x2.2, consider the asymptotically

holomorphic sections srefk;x of Lk with Gaussian decay away from x given

by Lemma 2, and the complex coordinate functions z1k and z2k of a local

approximately holomorphic Darboux coordinate chart on a neighborhood of

x. Recall that the two asymptotically holomorphic 1-forms

�1k = @
�z1ksrefk;x

s0k

�
and �2k = @

�z2ksrefk;x
s0k

�
are, at x, both of norm larger than a �xed constant and mutually orthogonal,

and that �1k, �
2

k and their derivatives are uniformly bounded independently

of k.

Because �1k(x) and �
2

k(x) de�ne an orthogonal frame in �1;0T �xX, there

exist complex numbers ak and bk such that @h2k(x) = ak�
1

k(x) + bk�
2

k(x).

Let �k;x = (�bkz
1

k � �akz
2

k)s
ref

k;x. The properties of �k;x of importance to us are

the following : the sections �k;x are asymptotically holomorphic because the

coordinates zik are asymptotically holomorphic ; they are uniformly bounded

in C3 norm by a constant C0, because of the bounds on s
ref

k;x, on the coor-

dinate chart and on @h2k(x) ; they have uniform Gaussian decay away from

x ; and, letting

�k;x = @
��k;x
s0k

�
^ @h2k;
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one has j�k;x(x)j = j(�bk�1k(x) � �ak�
2

k(x)) ^ (ak�
1

k(x) + bk�
2

k(x))j � 00 for

some constant 00 > 0, because of the lower bounds on j�ik(x)j and j@h2k(x)j.
Because r�k;x is uniformly bounded and j�k;x(x)j � 00, there exists a

constant r0 > 0 independent of k such that j�k;xj remains larger than 00

2

over the ball Bgk(x; r
0). De�ne on Bgk(x; r

0) the function uk = ��1k;xJac(hk)

with values in C : because �k;x is bounded from above and below and has

bounded derivative, the transversality to 0 of uk is equivalent to that of

Jac(hk). Moreover, for any wk 2 C , adding wk�k;x to s1k is equivalent to

adding wk�k;x to Jac(hk) = @h1k ^ @h2k, i.e. adding wk to uk. Therefore, to

prove Proposition 5 we only need to �nd wk 2 C with jwkj � Æ
C0

such that

the functions uk � wk are transverse to 0.

Using the local approximately holomorphic coordinate chart, one can ob-

tain from uk, after composing with a �xed dilation of C 2 if necessary, func-

tions vk de�ned on the ball B+ � C 2 , with values in C , and satisfying the

estimates jvkj = O(1), j�@vkj = O(k�1=2) and jr�@vkj = O(k�1=2). One can

then apply Proposition 6, provided that k is large enough, to obtain con-

stants wk 2 C , with jwkj � Æ
C0
, such that vk � wk is �-transverse to 0 over

the unit ball in C 2 , where � = Æ
C0

log(( Æ
C0
)�1)�p. Therefore, uk � wk is �

C0 -

transverse to 0 over Bgk(x; c) for some constants c and C
0. Multiplying by

�k;x, one �nally gets that, over Bgk(x; c), Jac(hk)� wk�k;x is �-transverse

to 0, where � = �
C00 for some constant C

00.

In other terms, let (�0k;x; �
1

k;x; �
2

k;x) = (0;�wk�k;x; 0), and de�ne ~hk sim-

ilarly to hk starting with sk + �k;x instead of sk : then the above dis-

cussion shows that Jac(~hk) is �-transverse to 0 over Bgk(x; c). Moreover,

j�k;xjC3 = jwkj j�k;xjC3 � Æ, and the sections �k;x have uniform Gaussian

decay away from x. As remarked above, the �-transversality to 0 of Jac(~hk)

implies that Jac(P(sk+�k;x)) is �
0-transverse to 0 for some �0 di�ering from �

by at most a constant factor. The assumptions of Proposition 3 are therefore

satis�ed, since �0 � c0Æ log(Æ�1)�p for a suitable constant c0 > 0.

Moreover, the whole argument also applies to one-parameter families of

sections st;k as well. The only nontrivial point to check, in order to apply the

above construction for each t 2 [0; 1] in such a way that everything depends

continuously on t, is the existence of a continuous family of rotations of

C 2 acting on (h1k; h
2

k) allowing one to assume that j@h2t;k(x)j > 0

2
for all t.

For this, observe that, for every t, such rotations in SU(2) are in one-to-

one correspondence with pairs (�; �) 2 C 2 such that j�j2 + j�j2 = 1 and

j� @h1t;k(x) + � @h2t;k(x)j > 0

2
. The set �t of such pairs (�; �) is non-empty

because j@ht;k(x)j � 0 ; let us now prove that it is connected.

First, notice that �t is invariant under the diagonal S1 action on C 2 .

Therefore, it is suÆcient to prove that the set of (� : �) 2 C P
1 such that

�(� : �) :=
j� @h1t;k(x) + � @h2t;k(x)j2

j�j2 + j�j2 >
(0)2

4

is connected. For this, consider a critical point of � over C P1. Composing

with a rotation in C P
1, one may assume that this critical point is (1 : 0).

Then it follows from the property @
@��(1 : �)j�=0 = 0 that @h1t;k(x) and
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@h2t;k(x) must necessarily be orthogonal to each other. Therefore, one has

�(1 : �) =
j@h1t;k(x)j2 + j�j2j@h2t;k(x)j2

1 + j�j2 ;

and it follows that either � is constant over C P1 (if j@h1t;k(x)j = j@h2t;k(x)j),
or the critical point is nondegenerate of index 0 (if j@h1t;k(x)j < j@h2t;k(x)j),
or it is nondegenerate of index 2 (if j@h1t;k(x)j > j@h2t;k(x)j). As a conse-

quence, since � has no critical point of index 1, all nonempty sets of the

form f(� : �) 2 C P
1; �(�; �) > constantg are connected.

Lifting back from C P
1 to the unit sphere in C 2 , it follows that �t is

connected. Therefore, for each t the open set �t � SU(2) of admissible

rotations of C 2 is connected. Since ht;k depends continuously on t, the sets

�t also depend continuously on t (with respect to nearly every conceivable

topology), and therefore
S
tftg � �t is connected. The same argument as

in the end of x2.3 then implies the existence of a continuous section ofS
tftg��t over [0; 1], i.e. the existence of a continuous one-parameter family

of rotations of C 2 which allows one to ensure that j@h2t;k(x)j > 0

2
for all t.

Therefore, the argument described in this section also applies to the case of

one-parameter families, and the assumptions of Proposition 3 are satis�ed

by the property P even in the case of one-parameter families of sections.

Proposition 5 follows immediately.

3.2. Nondegeneracy of cusps. At this point in the proof, we have ob-

tained sections satisfying the transversality property P3(). The only miss-

ing property in order to obtain �-genericity for some � > 0 is the transversal-

ity to 0 of the restriction of T (sk) to R(sk). The main result of this section

is therefore the following :

Proposition 7. Let Æ and  be two constants such that 0 < Æ < 
4
, and let

(sk)k�0 be asymptotically holomorphic sections of C 3 
 Lk satisfying P3()
for all k. Then there exists a constant � > 0 such that, for all large enough

values of k, there exist asymptotically holomorphic sections �k of C 3 
 Lk

such that j�k�skjC3;gk
� Æ and that the restrictions to R(�k) of the sections

T (�k) are �-transverse to 0 over R(�k). Moreover, the same statement holds

for families of sections indexed by a parameter t 2 [0; 1].

Note that, decreasing Æ if necessary in the statement of Proposition 7, it

is safe to assume that all sections lying within Æ of sk in C3 norm, and in

particular the sections �k, satisfy P3(2 ).
There are several ways of obtaining transversality to 0 of certain sections

restricted to asymptotically holomorphic symplectic submanifolds : for ex-

ample, one such technique is described in the main argument of [1]. However

in our case, the perturbations we will add to sk in order to get the transver-

sality to 0 of T (sk) have the side e�ect of moving the submanifolds R(sk)

along which the transversality conditions have to hold, which makes things

slightly more complicated. Therefore, we choose to use the equivalence be-

tween two di�erent transversality properties :

Lemma 6. Let �k and �0k be asymptotically holomorphic sections of vector

bundles Ek and E0k respectively over X. Assume that �0k is -transverse to 0
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over X for some  > 0, and let �0k be its (smooth) zero set. Fix a constant

r > 0 and a point x 2 X. Then :

(1) There exists a constant c > 0, depending only on r,  and the bounds

on the sections, such that, if the restriction of �k to �0k is �-transverse to 0

over Bgk(x; r) \�0k for some � < , then �k � �0k is c �-transverse to 0 at x

as a section of Ek �E0k.

(2) If �k � �0k is �-transverse to 0 at x and x belongs to �0k, then the

restriction of �k to �0k is �-transverse to 0 at x.

Proof. We start with (1), whose proof follows the ideas of x3.6 of [1] with

improved estimates. Let C1 be a constant bounding jr�kj everywhere, and
let C2 be a constant bounding jrr�kj and jrr�0kj everywhere. Fix two

constants 0 < c < c0 < 1

2
, such that the following inequalities hold : c < r,

c < 1

2
 C�1

1
, c0 < (2 + �1C1)

�1, and (2C2
�1 + 1)c < c0. Clearly, these

constants depend only on r, , C1 and C2.

Assume that j�k(x)j and j�0k(x)j are both smaller than c �. Because of

the -transversality to 0 of �0k and because j�0k(x)j < c � < , the covariant

derivative of �0k is surjective at x, and admits a right inverse (E0k)x ! TxX

of norm less than �1. Since the connection is unitary, applying this right

inverse to �0k itself one can follow the downward gradient ow of j�0kj, and
since one remains in the region where j�0kj <  this gradient ow converges

to a point y where �0k vanishes, at a distance d from the starting point x

no larger than �1c �. In particular, d < c < r, so y 2 Bgk(x; r) \ �0k, and

therefore the restriction of �k to �
0
k is �-transverse to 0 at y.

Since c < 1

2
 C�1

1
, the norm of �k(y) di�ers from that of �k(x) by at most

C1d <
�
2
, and so j�k(y)j < �. Since y 2 Bgk(x; r) \ �0k, we therefore know

that r�0k is surjective at y and vanishes in all directions tangential to �0k,

while r�k restricted to Ty�
0
k is surjective and larger than �. It follows that

r(�k��0k) is surjective at y. Let � : (Ek)y ! Ty�
0
k and �

0 : (E0k)y ! TyX be

the right inverses ofry�kj�0

k
andry�

0
k given by the transversality properties

of �kj�0

k
and �0k. We now construct a right inverse �̂ : (Ek �E0k)y ! TyX of

ry(�k � �0k) with bounded norm.

Considering any element u 2 (Ek)y, the vector û = �(u) 2 Ty�
0
k has

norm at most ��1juj and satis�es r�k(û) = u. Clearly r�0k(û) = 0 because

û is tangent to �0k, so we de�ne �̂(u) = û. Now consider an element v

of (E0k)y, and let v̂ = �0(v) : we have jv̂j � �1jvj and r�0k(v̂) = v. Let

ŵ = �(r�k(v̂)) : then r�k(ŵ) = r�k(v̂) and r�0k(ŵ) = 0, while jŵj �
��1C1jv̂j � ��1�1C1jvj. Therefore r(�k � �0k)(v̂ � ŵ) = v, and we de�ne

�̂(v) = v̂ � ŵ.

Therefore r(�k � �0k) admits at y a right inverse �̂ of norm bounded by

��1 + �1 + ��1�1C1 � (2 + �1C1)�
�1 < (c0�)�1. Finally, note that

rx(�k � �0k) di�ers from ry(�k � �0k) by at most 2C2d < 2C2
�1c � <

(c0 � c)�. Therefore, rx(�k � �0k) is also surjective, and is larger than

(c0�) � ((c0 � c)�) = c �. In other terms, we have shown that �k � �0k is

c �-transverse to 0 at x, which is what we sought to prove.

The proof of (2) is much easier : we know that x 2 �0k, i.e. �
0
k(x) = 0,

and let us assume that j�k(x)j < �. Then j�k(x) � �0k(x)j = j�k(x)j < �,

and the �-transversality to 0 of �k � �0k at x implies that rx(�k � �0k) has
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a right inverse �̂ of norm less than ��1. Choose any u 2 (Ek)x, and let

�(u) = �̂(u � 0). One has r�0k(�(u)) = 0, therefore �(u) lies in Tx�
0
k, and

r�k(�(u)) = u by construction. So (r�k)jTx�0

k
is surjective and admits � as

a right inverse. Moreover, j�(u)j = j�̂(u � 0)j � ��1juj, so the norm of � is

less than ��1, which shows that �kj�0

k
is �-transverse to 0 at x.

It follows from assertion (2) of Lemma 6 that, in order to obtain the

transversality to 0 of T (�k)jR(�k), it is suÆcient to make T (�k) � Jac(P�k)

transverse to 0 over a neighborhood of R(�k). Therefore, we can use once

more the globalization principle of Proposition 3 to prove Proposition 7.

Indeed, consider a section s of C 3 
Lk satisfying P3(2 ), a point x 2 X and

a constant � > 0, and say that s satis�es the property P(�; x) if either x is

at distance more than � of R(s), or x lies close to R(s) and T (s)� Jac(Ps)

is �-transverse to 0 at x (i.e. one of the two quantities j(T (s)�Jac(Ps))(x)j
and jr(T (s)�Jac(Ps))(x)j is larger than �). Since Jac(Ps)�T (s) is, under
the assumption P3(2 ), a smooth function of s and its �rst two derivatives,

and since R(s) depends nicely on s, it is easy to show that the property

P is local and C3-open. So one only needs to check that P satis�es the

assumptions of Proposition 3. Our next remark is :

Lemma 7. There exists a constant r0
0
> 0 (independent of k) with the

following property : choose x 2 X and r0 < r0
0
, and let sk be asymptotically

holomorphic sections of C 3 
 Lk satisfying P3(2 ). Assume that Bgk(x; r
0)

intersects R(sk). Then there exists an approximately holomorphic map �k;x
from the disc D+ of radius 11

10
in C to R(sk) such that : (i) the image by

�k;x of the unit disc D contains Bgk(x; r
0) \R(sk) ; (ii) jr�k;xjC1;gk

= O(1)

and j�@�k;xjC1;gk
= O(k�1=2) ; (iii) �k;x(D

+) is contained in a ball of radius

O(r0) centered at x.

Moreover the same statement holds for one-parameter families of sec-

tions : given sections (st;k)t2[0;1] depending continuously on t, satisfying

P3(2 ) and such that Bgk(x; r
0) intersects R(st;k) for all t, there exist approx-

imately Jt-holomorphic maps �t;k;x depending continuously on t and with the

same properties as above.

Proof. We work directly with the case of one-parameter families (the re-

sult for isolated sections follows trivially) and let jt;k = Jac(Pst;k). First

note that R(st;k) is the zero set of jt;k, which is 
2
-transverse to 0 and has

uniformly bounded second derivative. So, given any point y 2 R(st;k),

jrjt;k(y)j > 
2
, and therefore there exists c > 0, depending only on  and

the bound on rrjt;k, such that rjt;k varies by a factor of at most 1

10
in the

ball of radius c centered at y. It follows that Bgk(y; c)\R(st;k) is di�eomor-
phic to a ball (in other words, R(st;k) is \trivial at small scale").

Assume �rst that 3r0 < c. For all t, choose a point yt;k (not neces-

sarily depending continuously on t) in Bgk(x; r
0) \ R(st;k) 6= ;. The in-

tersection Bgk(yt;k; 3r
0) \ R(st;k) is di�eomorphic to a ball and therefore

connected, and contains Bgk(x; r
0)\R(st;k) which is nonempty and depends

continuously on t. Therefore, the set
S
tftg �Bgk(yt;k; 3r

0) \R(st;k) is con-
nected, which implies the existence of points xt;k 2 Bgk(yt;k; 3r

0)\R(st;k) �
Bgk(x; 4r

0) \R(st;k) which depend continuously on t.
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Consider local approximately Jt-holomorphic coordinate charts over a

neighborhood of xt;k, depending continuously on t, as given by Lemma 3,

and call  t;k : (C
2 ; 0)! (X;xt;k) the inverse of the coordinate map. Because

of asymptotic holomorphicity, the tangent space to R(st;k) at xt;k lies within

O(k�1=2) of the complex subspace ~Txt;kR(st;k) = Ker @jt;k(xt;k) of Txt;kX.

Composing  t;k with a rotation in C 2 , one can get maps  0t;k satisfying the

same bounds as  t;k and such that the di�erential of  0t;k at 0 maps C �f0g
to ~Txt;kR(st;k).

The estimates of Lemma 3 imply that there exists a constant � = O(r0)

such that  0t;k(BC 2 (0; �)) � Bgk(x; r
0). De�ne ~ t;k(z) =  0t;k(�z) : if r0

is suÆciently small, this map is well-de�ned over the ball BC 2 (0; 2). Over

BC2 (0; 2) the estimates of Lemma 3 imply that j�@ ~ t;kjC1;gk
= O(�k�1=2)

and jr ~ t;kjC1;gk
= O(�). Moreover, because � = O(r0) the image by ~ t;k of

BC2 (0; 2) is contained in a ball of radius O(r0) around x.

Assuming r0 to be suÆciently small, one can also require that the image

of BC2 (0; 2) by
~ t;k has diameter less than c. The submanifolds R(st;k) are

then trivial over the considered balls, so it follows from the implicit function

theorem that R(st;k) \ ~ t;k(D
+ � D+) can be parametrized in the chosen

coordinates as the set of points of the form ~ t;k(z; �t;k(z)) for z 2 D+, where

�t;k : D
+ ! D+ satis�es �t;k(0) = 0 and r�t;k(0) = O(k�1=2).

The derivatives of �t;k can be easily computed, since they are characterized

by the equation jt;k( ~ t;k(z; �t;k(z))) = 0. Notice that, if r0 is small enough,

it follows from the transversality to 0 of jt;k that jrjt;k Æ d ~ t;k(v)j is larger
than a constant times �jvj for all v 2 f0g� C and at any point of D+�D+.

Combining this estimate with the bounds on the derivatives of jt;k given by

asymptotic holomorphicity and the above bounds on the derivatives of ~ t;k,

one gets that jr�t;kjC1 = O(1) and j�@�t;kjC1 = O(k�1=2) over D+.

One then de�nes �t;k(z) = ~ t;k(z; �t;k(z)) over D+, which satis�es all

the required properties : the image �t;k(D
+) is contained in R(st;k) and in

a ball of radius O(r0) centered at x ; �t;k(D) contains the intersection of

R(st;k) with ~ t;k(D �D+) �  0t;k(BC 2 (0; �)) � Bgk(x; r
0) ; and the required

bounds on derivatives follow directly from those on derivatives of �t;k and
~ t;k. Therefore, Lemma 7 is proved under the assumption that r0 is small

enough. We set r0
0
in the statement of the lemma to be the bound on r0

which ensures that all the assumptions we have made on r0 are satis�ed.

We now prove that the assumptions of Proposition 3 hold for property

P in the case of single sections sk (the case of one-parameter families is

discussed later). Let x 2 X, 0 < Æ < 
4
, and consider asymptotically

holomorphic sections sk of C
3 
 Lk satisfying P3(2 ) and the corresponding

maps fk = Psk. We have to show that, for large enough k, a perturbation of

sk with Gaussian decay and smaller than Æ in C3 norm can make property

P hold over a ball centered at x. Because of assertion (1) of Lemma 6, it is

actually suÆcient to show that there exist constants c, c0 and p independent

of k and Æ such that, if x lies within distance c of R(sk), then sk can be

perturbed to make the restriction of T (sk) to R(sk) �-transverse to 0 over the
intersection of R(sk) with a ball Bgk(x; c), where � = c0Æ (log Æ�1)�p. Such a
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result is then suÆcient to imply the transversality to 0 of T (sk)�Jac(fk) over
the ball Bgk(x;

c
2
), with a transversality constant decreased by a bounded

factor.

As in previous sections, composing with a rotation in C 3 (constant over

X), one can assume that sk(x) is directed along the �rst component in C 3 ,

i.e. that s1k(x) = s2k(x) = 0 and therefore js0k(x)j � 
2
. Because of the

uniform bound on jrskj, there exists r > 0 (independent of k) such that

js0kj � 
3
, js1kj < 

3
and js2kj < 

3
over the ball Bgk(x; r). Therefore, over this

ball one can de�ne the map

hk(y) = (h1k(y); h
2

k(y)) =
�s1k(y)
s0k(y)

;
s2k(y)

s0k(y)

�
:

The map fk is the composition of hk with the map � : (z1; z2) 7! [1 : z1 : z2]

from C 2 to C P2, which is a quasi-isometry over the unit ball in C 2 . Therefore,

at any point y 2 Bgk(x; r), the bound j@fk(y)j � 
2
implies that j@hk(y)j � 0

for some constant 0 > 0. Moreover, one has Jac(fk) = � Jac(hk), where

�(y) is the Jacobian of � at hk(y). In particular, Jac(hk) vanishes at exactly

the same points of Bgk(x; r) as Jac(fk). Since j�j is bounded between two

universal constants over Bgk(x; r) and r� is bounded too, it follows from

the 
2
-transversality to 0 of Jac(fk) that, decreasing 

0 if necessary, Jac(hk)

is 0-transverse to 0 over Bgk(x; r).

Since j@hk(x)j � 0, after composing with a rotation in C 2 (constant over

X) acting on the two components (s1k; s
2

k) one can assume that j@h2k(x)j � 0

2
.

Since rrhk is uniformly bounded, decreasing r if necessary one can ensure

that j@h2kj remains larger than 0

4
at every point of Bgk(x; r).

Let us now show that, over R̂x(sk) = Bgk(x; r)\R(sk), the transversality
to 0 of T (sk) follows from that of T̂ (sk) = @h2k ^ @Jac(hk).
It follows from the identity Jac(fk) = � Jac(hk) and the vanishing of

Jac(hk) over R̂x(sk) that @Jac(fk) = �@Jac(hk) over R̂x(sk). Moreover

the two (1; 0)-forms @fk and @hk have complex rank one at any point of

R̂x(sk) and are related by @fk = d�(@hk), so they have the same kernel

(in some sense they are \colinear"). Because j@h2kj is bounded from below

over Bgk(x; r), the ratio between j@hkj and j@h2kj is bounded. Because the
line bundle L(sk) on which one projects @fk coincides with Im @fk over

R(sk), we have j�(@fk)j = j@fkj over R(sk). Since � is a quasi-isometry

over the unit ball, it follows that the ratio between j�(@fk)j and j@h2kj is
bounded from above and below over R̂x(sk). Moreover, the two 1-forms

�(@fk) and @h2k have same kernel, so one can write �(@fk) =  @h2k over

R̂x(sk), with  bounded from above and below. Because of the uniform

bounds on derivatives of sk and therefore fk and hk, it is easy to check that

the derivatives of  are bounded.

So T (sk) = � T̂ (sk) over R̂x(sk). Therefore, assume that T̂ (sk)jR(sk) is
�-transverse to 0 at a given point y 2 R̂x(sk), and let C > 1 be a constant

such that 1

C
< j� j < C and jr(� )j < C over R̂x(sk). If jT (sk)(y)j < �

2C3 ,

then jT̂ (sk)(y)j < �
2C2 < �, and therefore j@(T̂ (sk))(y)j > �, so at y one has

j@(T (sk))j � j� @(T̂ (sk))j � jT̂ (sk)@(� )j > 1

C
� � �

2C2C = �
2C

> �
2C3 . In

other terms, the restriction to R(sk) of T (sk) is �
2C3 -transverse to 0 at y.
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Therefore, we only need to show that there exists a constant c > 0 such

that, if Bgk(x; c) \R(sk) 6= ;, then by perturbing sk it is possible to ensure

that T̂ (sk)jR(sk) is transverse to 0 over Bgk(x; c) \R(sk).
By Lemma 7, given any suÆciently small constant c > 0 and assuming

that Bgk(x; c) \R(sk) 6= ;, there exists an approximately holomorphic map

�k : D
+ ! R(sk) such that �k(D) contains Bgk(x; c) \R(sk) and satisfying

bounds jr�kjC1;gk
= O(1) and j�@�kjC1;gk

= O(k�1=2). We call �c = O(c) the

size of the ball such that �k(D
+) � Bgk(x; �c), and assume that c is small

enough to have �c < r.

From now on, we assume that Bgk(x; c) \R(sk) 6= ;.
Let srefk;x be the asymptotically holomorphic sections of Lk with Gaussian

decay away from x given by Lemma 2, and let z1k and z2k be the complex

coordinate functions of a local approximately holomorphic Darboux coordi-

nate chart on a neighborhood of x. There exist two complex numbers a and

b such that @h2k(x) = a @z1k(x) + b @z2k(x). Composing the coordinate chart

(z1k; z
2

k) with the rotation

1

jaj2 + jb2j

�
�b ��a
a b

�
;

we can actually write @h2k(x) = �@z2k(x), with j�j bounded from below

independently of k and x. We now de�ne Qk;x =
�
0; (z1k)

2srefk;x; 0
�
and study

the behavior of T̂ (sk + wQk;x) for small w 2 C .

First we look at how adding wQk;x to sk a�ects the submanifold R(sk) :

for small enough w, R(sk +wQk;x) is a small deformation of R(sk) and can

therefore be seen as a section of TXjR(sk). Because the derivative of Jac(hk)

is uniformly bounded and Bgk(x; c)\R(sk) is not empty, if c is small enough
then jJac(hk)j remains less than 0 over Bgk(x; �c). Recall that Jac(hk) is 

0-

transverse to 0 over Bgk(x; r) : therefore, at every point y 2 Bgk(x; �c),

rJac(hk) admits a right inverse � : �2;0T �yX ! TyX of norm less than 1

0 .

Adding wQk;x to sk increases Jac(hk) by w�k;x, where

�k;x = @
� (z1k)2srefk;x

s0k

�
^ @h2k:

Therefore, R(sk +wQk;x) is obtained by shifting R(sk) by an amount equal

to ��(w�k;x) + O(jw�k;xj2). It follows immediately that the value of

T̂ (sk + wQk;x) at a point of R(sk + wQk;x) di�ers from the value of T̂ (sk)
at the corresponding point of R(sk) by an amount

�k;x(w) = w @h2k ^ @�k;x �r(T̂ (sk)):�(w�k;x) +O(w2):

Our aim is therefore to show that, if c is small enough, for a suitable value

of w the quantity T̂ (sk)+�k;x(w) is transverse to 0 over R(sk)\Bgk(x; c).

Notice that the quantities T̂ (sk) and Jac(hk) are asymptotically holo-

morphic, so that r(T̂ (sk)) and � are approximately complex linear. There-
fore, r(T̂ (sk)):�(w�k;x) = wr(T̂ (sk)):�(�k;x) + O(k�1=2). It follows that

�k;x(w) = w�0

k;x +O(w2) +O(k�1=2), where

�0

k;x = @h2k ^ @�k;x �r(T̂ (sk)):�(�k;x):
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We start by computing the value of �0

k;x at x, using the fact that @h
2

k(x) =

�@z2k(x) while z
1

k(x) = 0 and therefore �k;x(x) = 0. Because of the identity

�k;x =
sref
k;x

s0
k

2z1k@z
1

k ^ @h2k +O(jz1kj2), an easy calculation yields that

@�k;x = 2
srefk;x

s0k
(@z1k ^ @h2k) @z1k +O(jz1kj)

and therefore

�0

k;x(x) = �2�2
srefk;x(x)

s0k(x)

�
@z1k(x) ^ @z2k(x)

�
2
:

The important point is that there exists a constant 00 > 0 independent of

k and x such that j�0

k;x(x)j � 00.

Since the derivatives of �0

k;x are uniformly bounded, j�0

k;xj remains larger
than 00

2
at every point of Bgk(x; �c) if c is small enough. It follows that, over

R(sk)\Bgk(x; c), the transversality to 0 of T̂ (sk)+�k;x(w) is equivalent to

that of (T̂ (sk) + �k;x(w))=�
0

k;x. The value of c we �nally choose to use in

Lemma 7 for the construction of �k is one small enough to ensure that all

the above statements hold (but still independent of k, x and Æ). Now de�ne,

over the disc D+ � C , the function

vk(z) =
T̂ (sk)(�k(z))
�0

k;x(�k(z))

with values in C . Because �0

k;x is bounded from below over Bgk(x; �c) and

because of the bounds on the derivatives of �k given by Lemma 7, the func-

tions vk : D+ ! C satisfy the hypotheses of Proposition 6 for all large

enough k. Therefore, if C0 is a constant larger than jQk;xjC3;gk
, and if k

is large enough, there exists wk 2 C , with jwkj � Æ
C0
, such that vk + wk is

�-transverse to 0 over the unit disc D in C , where � = Æ
C0

log(( Æ
C0
)�1)�p.

Multiplying again by �0

k;x and recalling that �k maps di�eomorphicallyD

to a subset of R(sk) containing R(sk)\Bgk(x; c), we get that the restriction

to R(sk) of T̂ (sk)+wk�
0

k;x is �
0-transverse to 0 over R(sk)\Bgk(x; c) for some

�0 di�ering from � by at most a constant factor. Recall that �k;x(wk) =

wk�
0

k;x+O(jwkj2)+O(k�1=2), and note that jwkj2 is at most of the order of
Æ2, while �0 is of the order of Æ log(Æ�1)�p : so, if Æ is small enough, one can

assume that jwkj2 is much smaller than �0. If k is large enough, k�1=2 is also
much smaller than �0, so that T̂ (sk)+�k;x(wk) di�ers from T̂ (sk)+wk�

0

k;x

by less than �0

2
, and is therefore �0

2
-transverse to 0 over R(sk) \Bgk(x; c).

Next, recall that R(sk + wkQk;x) is obtained by shifting R(sk) by an

amount ��(wk�k;x) +O(jwk�k;xj2) = O(jwkj) (because j�k;xj is uniformly
bounded, or more generally because the perturbation of sk is O(jwkj) in C3

norm). So, if Æ is small enough, one can safely assume that the distance

by which one shifts the points of R(sk) is less than c
2
. Therefore, given

any point in R(sk + wkQk;x) \ Bgk(x;
c
2
), the corresponding point in R(sk)

belongs to Bgk(x; c).
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We have seen above that the value of T̂ (sk + wkQk;x) at a point of

R(sk+wkQk;x) di�ers from the value of T̂ (sk) at the corresponding point of
R(sk) by �k;x(wk) ; therefore it follows from the transversality properties of

T̂ (sk)+�k;x(wk) that the restriction to R(sk+wkQk;x) of T̂ (sk+wkQk;x) is

�00-transverse to 0 over R(sk+wkQk;x)\Bgk(x;
c
2
) for some �00 > 0 di�ering

from �0 by at most a constant factor.

By the remarks above, this transversality property implies transversality

to 0 of the restriction of T (sk + wkQk;x) over R(sk + wkQk;x) \ Bgk(x;
c
2
) ;

therefore, by Lemma 6, T (sk+wkQk;x)�Jac(P(sk+wkQk;x)) is �-transverse

to 0 over Bgk(x;
c
4
), with a transversality constant � di�ering from �00 by

at most a constant factor. So, if Æ is small enough and k large enough,

in the case where Bgk(x; c) \ R(sk) 6= ;, we have constructed wk such

that sk + wkQk;x satis�es the required property P(�; y) at every point

y 2 Bgk(x;
c
4
). By construction, jwkQk;xjC3;gk

� Æ, the asymptotically holo-

morphic sections Qk;x have uniform Gaussian decay away from x, and � is

larger than c0Æ log(Æ�1)�p for some constant c0 > 0, so all required properties

hold in this case.

Moreover, in the case where Bgk(x; c) does not intersect R(sk), the section

sk already satis�es the property P(3
4
c; y) at every point y of Bgk(x;

c
4
) and

no perturbation is necessary. Therefore, the property P under consideration

satis�es the hypotheses of Proposition 3 whether Bgk(x; c) intersects R(sk)

or not. This ends the proof of Proposition 7 for isolated sections sk.

In the case of one-parameter families of sections, the argument still works

similarly : we are now given sections st;k depending continuously on a pa-

rameter t 2 [0; 1], and try to perform the same construction as above for

each value of t, in such a way that everything depends continuously on t.

As previously, we have to show that one can perturb st;k in order to ensure

that, for all t such that x lies in a neighborhood of R(st;k), T (st;k)jR(st;k) is
transverse to 0 over the intersection of R(st;k) with a ball centered at x.

As before, a continuous family of rotations of C 3 can be used to ensure

that s1t;k(x) and s
2

t;k(x) vanish for all t, allowing one to de�ne ht;k for all t.

Moreover the argument at the end of x3.1 proves the existence of a continu-
ous one-parameter family of rotations of C 2 acting on the two components

(s1t;k; s
2

t;k) allowing one to assume that j@h2t;k(x)j � 0

2
for all t. Therefore,

as in the case of isolated sections, the problem is reduced to that of per-

turbing st;k when x lies in a neighborhood of R(st;k) in order to obtain the

transversality to 0 of T̂ (st;k)jR(st;k) over the intersection of R(st;k) with a

ball centered at x.

Because Lemma 7 and Proposition 6 also apply in the case of 1-parameter

families of sections, the argument used above to obtain the expected transver-

sality result for isolated sections also works here for all t such that x lies in

the neighborhood of R(st;k). However, the ball Bgk(x; c) intersects R(st;k)

only for certain values of t 2 [0; 1], which makes it necessary to work more

carefully.

De�ne 
k � [0; 1] as the set of all t for which Bgk(x; c) \ R(st;k) 6= ;.
For all large enough k and for all t 2 
k, Lemma 7 allows one to de�ne

maps �t;k : D+ ! R(st;k) depending continuously on t and with the same
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properties as in the case of isolated sections. Using local coordinates zit;k
depending continuously on t given by Lemma 3 and sections sreft;k;x given

by Lemma 2, the quantities Qt;k;x, �t;k;x, �t;k;x(w), �
0

t;k;x and vt;k can be

de�ned for all t 2 
k by the same formulae as above and depend continuously

on t.

Proposition 6 then gives, for all large k and for all t 2 
k, complex

numbers wt;k of norm at most Æ
C0

and depending continuously on t, such

that the functions vt;k + wt;k are transverse to 0 over D. As in the case

of isolated sections, this implies that st;k + wt;kQt;k;x satis�es the required

transversality property over Bgk(x;
c
4
).

Our problem is to de�ne asymptotically holomorphic sections �t;k;x of

C 3
Lk for all values of t 2 [0; 1], of C3-norm less than Æ and with Gaussian

decay away from x, in such a way that the sections st;k + �t;k;x depend

continuously on t 2 [0; 1] and satisfy the property P over Bgk(x;
c
4
) for all t.

For this, let � : R+ ! [0; 1] be a continuous cut-o� function equal to 1 over

[0; 3c
4
] and to 0 over [c;+1). De�ne, for all t 2 
k,

�t;k;x = �
�
distgk(x;R(st;k))

�
wt;kQt;k;x;

and �t;k;x = 0 for all t 62 
k. It is clear that, for all t 2 [0; 1], the sections

�t;k;x are asymptotically holomorphic, have Gaussian decay away from x,

depend continuously on t and are smaller than Æ in C3 norm. Moreover,

for all t such that distgk(x;R(st;k)) � 3c
4
, one has �t;k;x = wt;kQt;k;x, so the

sections st;k+ �t;k;x satisfy property P over Bgk(x;
c
4
) for all such values of t.

For the remaining values of t, namely those such that x is at distance more

than 3c
4
from R(st;k), the argument is the following : since the perturbation

�t;k;x is smaller than Æ, every point of R(st;k + �t;k;x) lies within distance

O(Æ) of R(st;k). Therefore, decreasing the maximum allowable value of Æ in

Proposition 3 if necessary, one can safely assume that this distance is less

than c
4
. It follows that x is at distance more than c

2
of R(st;k + �t;k;x), and

so that the property P( c
4
; y) holds at every point y 2 Bgk(x;

c
4
).

Therefore, for all large enough k and for all t 2 [0; 1], the perturbed

sections st;k + �t;k;x satisfy property P over the ball Bgk(x;
c
4
). It follows

that the assumptions of Proposition 3 also hold for P in the case of one-

parameter families, and so Proposition 7 is proved.

4. Dealing with the antiholomorphic part

4.1. Holomorphicity in the neighborhood of cusp points. At this

point in the proof, we have constructed asymptotically holomorphic sections

of C 3
Lk satisfying all the required transversality properties. We now need

to show that, by further perturbation, one can obtain �@-tameness. We �rst

handle the case of cusp points :

Proposition 8. Let (sk)k�0 be -generic asymptotically J-holomorphic sec-

tions of C 3
Lk. Then there exist constants (Cp)p2N and c > 0 such that, for

all large k, there exist !-compatible almost-complex structures ~Jk on X and
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asymptotically J-holomorphic sections �k of C 3
Lk with the following prop-

erties : at any point whose gk-distance to C ~Jk(�k) is less than c, the almost-

complex structure ~Jk is integrable and the map P�k is ~Jk-holomorphic ; and

for all p 2 N, j ~Jk � J jCp;gk � Cpk
�1=2 and j�k � skjCp;gk � Cpk

�1=2.

Furthermore, the result also applies to one-parameter families of -generic

asymptotically Jt-holomorphic sections (st;k)t2[0;1];k�0 : for all large k there

exist almost-complex structures ~Jt;k and asymptotically Jt-holomorphic sec-

tions �t;k depending continuously on t and such that the above properties

hold for all values of t. Moreover, if s0;k and s1;k already satisfy the re-

quired properties, and if one assumes that, for some � > 0, Jt and st;k are

respectively equal to J0 and s0;k for all t 2 [0; �] and to J1 and s1;k for all

t 2 [1� �; 1], then it is possible to ensure that �0;k = s0;k and �1;k = s1;k.

The proof of this result relies on the following analysis lemma, which states

that any approximately holomorphic complex-valued function de�ned over

the ball B+ of radius 11

10
in C 2 can be approximated over the interior ball B

of unit radius by a holomorphic function :

Lemma 8. There exist an operator P : C1(B+; C ) ! C1(B; C ) and con-

stants (Kp)p2N such that, given any function f 2 C1(B+; C ), the function
~f = P (f) is holomorphic over the unit ball B and satis�es jf � ~f jCp(B) �
Kp j�@f jCp(B+) for every p 2 N.

Proof. (see also [2]). This is a standard fact which can be proved e.g. using

the H�ormander theory of weighted L2 spaces. Using a suitable weighted

L2 norm on B+ which compares uniformly with the standard norm on the

interior ball B0 of radius 1 + 1

20
(B � B0 � B+), one obtains a bounded

solution to the Cauchy-Riemann equation : for any �@-closed (0; 1)-form �

on B+ there exists a function T (�) such that �@T (�) = � and jT (�)jL2(B0) �
Cj�jL2(B+) for some constant C.

Take � = �@f and let h = T (�) : since �@h = � = �@f , the function ~f = f�h
is holomorphic (in other words, we set P = Id�T �@). Moreover the L2 norm

of h and the Cp norm of �@h = �@f over B0 are bounded by multiples of

j�@f jCp(B+) ; therefore, by standard elliptic theory, the same is true for the

Cp norm of h over the interior ball B, which gives the desired result.

We �rst prove Proposition 8 in the case of isolated sections sk, where the

argument is fairly easy. Because sk is -generic, the set of points of R(sk)

where T (sk) vanishes, i.e. CJ(sk), is �nite. Moreover rT (sk)jR(sk) is larger
than  at all cusp points and rrT (sk) is uniformly bounded, so there exists
a constant r > 0 such that the gk-distance between any two points of CJ(sk)
is larger than 4r.

Let x be a point of CJ(sk), and consider a local approximately J-holo-

morphic Darboux map  k : (C
2 ; 0)! (X;x) as given by Lemma 3. Because

of the bounds on �@ k, the !-compatible almost-complex structure J
0
k on the

ball Bgk(x; 2r) de�ned by pulling back the standard complex structure of

C 2 satis�es bounds of the type jJ 0k � J jCp;gk = O(k�1=2) over Bgk(x; 2r) for

all p 2 N.

Recall that the set of !-skew-symmetric endomorphisms of square �1
of the tangent bundle TX (i.e. !-compatible almost-complex structures) is
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a subbundle of End(TX) whose �bers are contractible. Therefore, there

exists a one-parameter family (J�k )�2[0;1] of !-compatible almost-complex

structures over Bgk(x; 2r) depending smoothly on � and such that J0k = J

and J1k = J 0k. Also, let �x : Bgk(x; 2r) ! [0; 1] be a smooth cut-o� function

with bounded derivatives such that �x = 1 over Bgk(x; r) and �x = 0 outside

of Bgk(x;
3

2
r).

Then, de�ne ~Jk to be the almost-complex structure which equals J out-

side of the 2r-neighborhood of CJ(sk), and which at any point y of a ball

Bgk(x; 2r) centered at x 2 CJ(sk) coincides with J
�x(y)
k : it is quite easy

to check that ~Jk is integrable over the r-neighborhood of CJ(sk) where it

coincides with J 0k, and satis�es bounds of the type j ~Jk � J jCp;gk = O(k�1=2)

8p 2 N.

Let us now return to a neighborhood of x 2 CJ(sk), where we need to per-
turb sk to make the corresponding projective map locally ~Jk-holomorphic.

First notice that, by composing with a rotation of C 3 (constant over X),

one can safely assume that s1k(x) = s2k(x) = 0. Therefore, js0k(x)j � , and

decreasing r if necessary one can assume that js0kj remains larger than 
2
at

every point of Bgk(x; r). The
~Jk-holomorphicity of Psk over a neighborhood

of x is then equivalent to that of the map hk with values in C 2 de�ned by

hk(y) = (h1k(y); h
2

k(y)) =
�s1k(y)
s0k(y)

;
s2k(y)

s0k(y)

�
:

Because of the properties of the map  k given by Lemma 3, there exist

constants � > 0 and r0 > 0, independent of k, such that  k(BC 2 (0;
11

10
�))

is contained in Bgk(x; r) while  k(BC 2 (0;
1

2
�)) contains Bgk(x; r

0). We now

de�ne the two complex-valued functions f1k (z) = h1k( k(�z)) and f2k (z) =

h2k( k(�z)) over the ball B+ � C 2 . By de�nition of ~Jk, the map  k in-

tertwines the almost-complex structure ~Jk over Bgk(x; r) and the standard

complex structure of C 2 , so our goal is to make the functions f1k and f2k
holomorphic in the usual sense over a ball in C 2 .

This is where we use Lemma 8. Remark that, because of the estimates on
�@J k given by Lemma 3 and those on �@Jhk coming from asymptotic holo-

morphicity, we have j�@f ikjCp(B+) = O(k�1=2) for every p 2 N and i 2 f1; 2g.
Therefore, by Lemma 8 there exist two holomorphic functions ~f1k and ~f2k ,

de�ned over the unit ball B � C 2 , such that jf ik � ~f ikjCp(B) = O(k�1=2) for

every p 2 N and i 2 f1; 2g.
Let � : [0; 1] ! [0; 1] be a smooth cut-o� function such that � = 1

over [0; 1
2
] and � = 0 over [3

4
; 1], and de�ne, for all z 2 B and i 2 f1; 2g,

f̂ ik(z) = �(jzj) ~f ik(z) + (1 � �(jzj))f ik(z). By construction, the functions f̂ ik
are holomorphic over the ball of radius 1

2
and di�er from f ik by O(k

�1=2).

Going back through the coordinate map, let ĥik be the functions on the

neighborhood Ux =  k(BC2 (0; �)) of x which satisfy ĥik( k(�z)) = f̂ ik(z) for

every z 2 B. De�ne ŝ0k = s0k, ŝ
1

k = ĥ1ks
0

k and ŝ2k = ĥ2ks
0

k over Ux, and let �k
be the global section of C 3 
 Lk which 8x 2 CJ(sk) equals ŝk over Ux and

which coincides with sk away from CJ(sk).
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Because f̂ ik = f ik near the boundary of B, ŝk coincides with sk near the

boundary of Ux, and �k is therefore a smooth section of C 3 
 Lk. For

every p 2 N, it follows from the bound jf̂ ik � f ikjCp(B) = O(k�1=2) that

j�k � skjCp;gk = O(k�1=2). Moreover, the functions f̂ ik are holomorphic

over BC2 (0;
1

2
) where they coincide with ~f ik, so the functions ĥik are ~Jk-

holomorphic over  k(BC 2 (0;
1

2
�)) � Bgk(x; r

0), and it follows that P�k is
~Jk-holomorphic over Bgk(x; r

0).

Therefore, the almost-complex structures ~Jk and the sections �k satisfy

all the required properties, except that the integrability of ~Jk and the holo-

morphicity of P�k are proved to hold on the r
0-neighborhood of CJ(sk) rather

than on a neighborhood of C ~Jk(�k).
However, the Cp bounds j ~Jk � Jkj = O(k�1=2) and j�k � skj = O(k�1=2)

imply that jJac ~Jk(P�k) � JacJ(Psk)j = O(k�1=2) and jT ~Jk(�k) � TJ(sk)j =
O(k�1=2). Therefore it follows from the transversality properties of sk that

the points of C ~Jk(�k) lie within gk-distance O(k
�1=2) of CJ(sk). In particular,

if k is large enough, the r0

2
-neighborhood of C ~Jk(�k) is contained in the r0-

neighborhood of CJ(sk), which ends the proof of Proposition 8 in the case

of isolated sections.

In the case of one-parameter families of sections, the argument is similar.

One �rst notices that, because of -genericity, there exists r > 0 such that,

for every t 2 [0; 1], the set CJt(st;k) consists of �nitely many points, any

two of which are mutually distant of at least 4r. Therefore, the points of

CJt(st;k) depend continuously on t, and their number remains constant.

Consider a continuous family (xt)t2[0;1] of points of CJt(st;k) : Lemma 3

provides approximately Jt-holomorphic Darboux maps  t;k depending con-

tinuously on t on a neighborhood of xt. By pulling back the standard

complex structure of C 2 , one obtains integrable almost-complex structures

J 0t;k over Bgk(xt; 2r), depending continuously on t and di�ering from Jt by

O(k�1=2). As previously, because the set of !-compatible almost-complex

structures is contractible, one can de�ne a continuous family of almost-

complex structures ~Jt;k on X by gluing together Jt with the almost-complex

structures J 0t;k de�ned over Bgk(xt; 2r), using a cut-o� function at distance

r from CJt(st;k). By construction, the almost-complex structures ~Jt;k are in-

tegrable over the r-neighborhood of CJt(st;k), and j ~Jt;k�JtjCp;gk = O(k�1=2)

for all p 2 N.

Next, we perturb st;k near xt 2 CJt(st;k) in order to make the corre-

sponding projective map locally ~Jt;k-holomorphic. As before, composing

with a rotation of C 3 (constant over X and depending continuously on t)

and decreasing r if necessary, we can assume that s1t;k(xt) = s2t;k(xt) = 0

and therefore that js0t;kj remains larger than 
2
over Bgk(xt; r). The ~Jt;k-

holomorphicity of Pst;k over Bgk(xt; r) is then equivalent to that of the map

ht;k with values in C 2 de�ned as above.

As previously, there exist constants � and r0 such that  t;k(BC 2 (0;
11

10
�))

is contained in Bgk(xt; r) and  t;k(BC 2 (0;
1

2
�)) � Bgk(xt; r

0) ; once again,
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our goal is to make the functions f it;k : B+ ! C de�ned by f it;k(z) =

hit;k( t;k(�z)) holomorphic in the usual sense.

Because of the estimates on �@Jt t;k and �@Jtht;k, we have j�@f it;kjCp(B+) =

O(k�1=2) 8p 2 N, so Lemma 8 provides holomorphic functions ~f it;k over

B which di�er from f it;k by O(k�1=2). By the same cut-o� procedure as

above, we can thus de�ne functions f̂ it;k which are holomorphic over BC2 (0;
1

2
)

and coincide with f it;k near the boundary of B. Going back through the

coordinate maps, we de�ne as previously functions ĥit;k and sections ŝt;k
over the neighborhood Ut;xt =  t;k(BC 2 (0; �)) of xt. Since ŝt;k coincides

with st;k near the boundary of Ut;xt , we can obtain smooth sections �t;k of

C 3 
 Lk by gluing st;k together with the various sections ŝt;k de�ned near

the points of CJt(st;k).
As previously, the maps P�t;k are ~Jt;k-holomorphic over the r

0-neighbor-

hood of CJt(st;k) and satisfy j�t;k � st;kjCp;gk = O(k�1=2) ; therefore the de-

sired result follows from the observation that, for large enough k, C ~Jt;k(�t;k)
lies within distance r0

2
of CJt(st;k).

We now consider the special case where s0;k already satis�es the re-

quired conditions, i.e. there exists an almost-complex structure �J0;k within

O(k�1=2) of J0, integrable near C �J0;k(s0;k), and such that Ps0;k is �J0;k-

holomorphic near C �J0;k(s0;k). Although this is actually not necessary for

the result to hold, we also assume, as in the statement of Proposition 8,

that st;k = s0;k and Jt = J0 for every t � �, for some � > 0. We want to

prove that one can take �0;k = s0;k in the above construction.

We �rst show that one can assume that ~J0;k coincides with �J0;k over

a small neighborhood of CJ0(s0;k). For this, remark that CJ0(s0;k) lies

within O(k�1=2) of C �J0;k(s0;k), so there exists a constant Æ such that, for

large enough k, �J0;k is integrable and Ps0;k is �J0;k-holomorphic over the

Æ-neighborhood of CJ0(s0;k).
Fix points (xt)t2[0;1] in CJt(st;k), and consider, for all t � �, the approx-

imately Jt-holomorphic Darboux coordinates (z1t;k; z
2

t;k) on a neighborhood

of xt and the inverse map  t;k given by Lemma 3 and which are used to

de�ne the almost-complex structures J 0t;k and
~Jt;k near xt. We want to show

that one can extend the family  t;k to all t 2 [0; 1] in such a way that the

map  0;k is �J0;k-holomorphic. The hypothesis that Jt and st;k are the same

for all t 2 [0; �] makes things easier to handle because J� = J0 and x� = x0.

Since �J0;k is integrable over Bgk(x0; Æ) and !-compatible, there exist

local complex Darboux coordinates Zk = (Z1

k ; Z
2

k) at x0 which are �J0;k-

holomorphic. It follows from the approximate J0-holomorphicity of the

coordinates z�;k = (z1�;k; z
2

�;k) and from the bound jJ0 � �J0;kj = O(k�1=2)

that, composing with a linear endomorphism of C 2 if necessary, one can

assume that the di�erentials at x0 of the two coordinate maps, namely

rx0z�;k and rx0Zk, lie within O(k�1=2) of each other. For all t 2 [0; �],

�zt;k =
t
�z�;k + (1 � t

�)Zk de�nes local coordinates on a neighborhood of x0 ;

however, for t 2 (0; �) this map fails to be symplectic by an amount which is
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O(k�1=2). So we apply Moser's argument to �zt;k in order to get local Dar-

boux coordinates zt;k over a neighborhood of x0 which interpolate between

Zk and z�;k and which di�er from �zt;k by O(k
�1=2). It is easy to check that,

if k is large enough, then the coordinates zt;k are well-de�ned over the ball

Bgk(xt; 2r). Since �@J0Zk and �@J0z�;k are O(k�1=2), and because zt;k di�ers

from �zt;k by O(k�1=2), the coordinates de�ned by zt;k are approximately

J0-holomorphic (in the sense of Lemma 3) for all t 2 [0; �].

De�ning  t;k as the inverse of the map zt;k for every t 2 [0; �], it follows

immediately that the maps  t;k, which depend continuously on t, are ap-

proximately Jt-holomorphic over a neighborhood of 0 for every t 2 [0; 1],

and that  0;k is �J0;k-holomorphic.

We can then de�ne J 0t;k as previously on Bgk(xt; 2r), and notice that J 0
0;k

coincides with �J0;k. Therefore, the corresponding almost-complex structures
~Jt;k over X, in addition to all the properties described previously, also satisfy

the equality ~J0;k = �J0;k over the r-neighborhood of CJ0(s0;k).
It follows that, constructing the sections �t;k from st;k as previously, we

have �0;k = s0;k. Indeed, since Ps0;k is already ~J0;k-holomorphic over the

r-neighborhood of CJ0(s0;k), we get that, in the above construction, h10;k and
h2
0;k are ~J0;k-holomorphic, and so f1

0;k and f
2

0;k are holomorphic. Therefore,

by de�nition of the operator P of Lemma 8, we have ~f1
0;k = f1

0;k and
~f2
0;k =

f2
0;k, which clearly implies that �0;k = s0;k.

The same argument applies near t = 1 to show that, if s1;k already satis�es

the expected properties and if Jt and st;k are the same for all t 2 [1 � �; 1],

then one can take �1;k = s1;k. This ends the proof of Proposition 8.

4.2. Holomorphicity at generic branch points. Our last step in order

to obtain �@-tame sections is to ensure, by further perturbation, the vanishing

of �@ ~Jk
(Psk) over the kernel of @ ~Jk

(Psk) at every branch point.

Proposition 9. Let (sk)k�0 be -generic asymptotically J-holomorphic sec-

tions of C 3
Lk. Assume that there exist !-compatible almost-complex struc-

tures ~Jk such that j ~Jk � J jCp;gk = O(k�1=2) for all p 2 N and such that, for

some constant c > 0, fk = Psk is ~Jk-holomorphic over the c-neighborhood of

C ~Jk(sk). Then, for all large k, there exist sections �k such that the following

properties hold : j�k � skjCp;gk = O(k�1=2) for all p 2 N ; �k coincides with

sk over the c
2
-neighborhood of C ~Jk(�k) = C ~Jk(sk) ; and, at every point of

R ~Jk
(�k), �@ ~Jk(P�k) vanishes over the kernel of @ ~Jk(P�k).

Moreover, the same result holds for one-parameter families of asymptoti-

cally Jt-holomorphic sections (st;k)t2[0;1];k�0 satisfying the above properties.

Furthermore, if s0;k and s1;k already satisfy the properties required of �0;k
and �1;k, then one can take �0;k = s0;k and �1;k = s1;k.

The role of the almost-complex structure J in the statement of this result

may seem ambiguous, as the sections sk are also asymptotically holomorphic

and generic with respect to the almost-complex structures ~Jk. The point

is that, by requiring that all the almost-complex structures ~Jk lie within

O(k�1=2) of a �xed almost-complex structure, one ensures the existence of

uniform bounds on the geometry of ~Jk independently of k.
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We now prove Proposition 9 in the case of isolated sections. In all the

following, we use the almost complex structure ~Jk implicitly. Consider a

point x 2 R(sk) at distance more than 3

4
c from C(sk), and let Kx be the

one-dimensional complex subspace Ker @fk(x) of TxX. Because x 62 C(sk),
we have TxX = TxR(sk) � Kx. Therefore, there exists a unique 1-form

�x 2 T �xX 
 Tfk(x)C P2 such that the restriction of �x to TxR(sk) is zero and

the restriction of �x to Kx is equal to �@fk(x)jKx
.

Because the restriction of T (sk) to R(sk) is transverse to 0 and because x

is at distance more than 3

4
c from C(sk), the quantity jT (sk)(x)j is bounded

from below by a uniform constant, and therefore the angle between TxR(sk)

and Kx is also bounded from below. So there exists a constant C indepen-

dent of k and x such that j�xj � Ck�1=2. Moreover, because �@fk vanishes

over the c-neighborhood of C(sk), the 1-form �x vanishes at all points x close

to C(sk) ; therefore we can extend � into a section of T �X 
 f�kT C P
2 over

R(sk) which vanishes over the c-neighborhood of C(sk), and which satis�es

bounds of the type j�jCp;gk = O(k�1=2) for all p 2 N.

Next, use the exponential map of the metric g to identify a tubular neigh-

borhood of R(sk) with a neighborhood of the zero section in the normal bun-

dle NR(sk). Given Æ > 0 suÆciently small, we de�ne a section � of f�kT C P
2

over the Æ-tubular neighborhood of R(sk) by the following identity : given

any point x 2 R(sk) and any vector � 2 NxR(sk) of norm less than Æ,

�(expx(�)) = �(j�j) �x(�);
where the �bers of f�kT C P

2 at x and at expx(�) are implicitly identi�ed using

radial parallel transport, and � : [0; Æ] ! [0; 1] is a smooth cut-o� function

equal to 1 over [0; 1
2
Æ] and 0 over [3

4
Æ; Æ]. Since � vanishes near the boundary

of the chosen tubular neighborhood, we can extend it into a smooth section

over all of X which vanishes at distance more than Æ from R(sk).

Decreasing Æ if necessary, we can assume that Æ < c
2
: it then follows from

the vanishing of � over the c-neighborhood of C(sk) that � vanishes over

the c
2
-neighborhood of C(sk). Moreover, because j�jCp;gk = O(k�1=2) for all

p 2 N and because the cut-o� function � is smooth, � also satis�es bounds

j�jCp;gk = O(k�1=2) for all p 2 N.

Fix a point x 2 R(sk) : � is identically zero over R(sk) by construction,

so r�(x) vanishes over TxR(sk) ; and, because � � 1 near the origin and

by de�nition of the exponential map, r�(x)jNxR(sk)
= �xjNxR(sk)

. Since

TxR(sk) and NxR(sk) generate TxX, we conclude that r�(x) = �x. In

particular, restricting to Kx, we get that r�(x)jKx
= �xjKx

= �@fk(x)jKx
.

Equivalently, since Kx is a complex subspace of TxX, we have �@�(x)jKx
=

�@fk(x)jKx
and @�(x)jKx

= 0 = @fk(x)jKx
.

Recall that, for all x 2 X, the tangent space to C P
2 at fk(x) = Psk(x)

canonically identi�es with the space of complex linear maps from C sk (x) to

(C sk (x))
? � C 3 
 Lkx. This allows us to de�ne �k(x) = sk(x)� �(x):sk(x).

It follows from the properties of � described above that �k coincides with

sk over the
c
2
-neighborhood of C(sk) and that j�k � skjCp;gk = O(k�1=2) for

all p 2 N. Because of the transversality properties of sk, we get that the

points of C(�k) lie within distance O(k�1=2) of C(sk), and therefore if k is

large enough that C(�k) = C(sk).
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Let ~fk = P�k, and consider a point x 2 R(sk) : since �(x) = 0 and

therefore ~fk(x) = fk(x), it is easy to check that r ~fk(x) = rfk(x) �r�(x)
in T �xX 
 Tfk(x)C P

2. Therefore, setting Kx = Ker @fk(x) as above, we get

that @ ~fk(x) = @fk(x)�@�(x) and �@ ~fk(x) = �@fk(x)� �@�(x) both vanish over

Kx. A �rst consequence is that @ ~fk(x) also has rank one, i.e. x 2 R(�k) :

therefore R(sk) � R(�k). However, because �k di�ers from sk by O(k
�1=2),

it follows from the transversality properties of sk that, for large enough k,

R(�k) is contained in a small neighborhood of R(sk), and so R(�k) = R(sk).

Furthermore, recall that at every point x of R(�k) = R(sk) one has
�@ ~fk(x)jKx

= @ ~fk(x)jKx
= 0. Therefore �@ ~fk(x) vanishes over the kernel

of @ ~fk(x), and so the sections �k satisfy all the required properties.

To handle the case of one-parameter families, remark that the above con-

struction consists of explicit formulae, so it is easy to check that �, � and �k
depend continuously on sk and ~Jk. Therefore, starting from one-parameter

families st;k and ~Jt;k, the above construction yields for all t 2 [0; 1] sections

�t;k which satisfy the required properties and depend continuously on t.

Moreover, if s0;k already satis�es the required properties, i.e. if �@f0;k(x)jKx

vanishes at any point x 2 R(s0;k), then the above de�nitions give � � 0, and

therefore � � 0 and �0;k = s0;k ; similarly for t = 1, which ends the proof of

Proposition 9.

4.3. Proof of the main theorems. Assuming that Theorem 3 holds, The-

orems 1 and 2 follow directly from the results we have proved so far : com-

bining Propositions 1, 4, 5 and 7, one gets, for all large k, asymptotically

holomorphic sections of C 3
Lk which are -generic for some constant  > 0 ;

Propositions 8 and 9 imply that these sections can be made �@-tame by per-

turbing them by O(k�1=2) (which preserves the genericity properties if k is

large enough) ; and Theorem 3 implies that the corresponding projective

maps are then approximately holomorphic singular branched coverings.

Let us now prove Theorem 4. We are given two sequences s0;k and s1;k
of sections of C 3 
Lk which are asymptotically holomorphic, -generic and
�@-tame with respect to almost-complex structures J0 and J1, and want to

show the existence of a one-parameter family of almost-complex structures

Jt interpolating between J0 and J1 and of generic and �@-tame asymptotically

Jt-holomorphic sections interpolating between s0;k and s1;k.

One starts by de�ning sections st;k and compatible almost-complex struc-

tures Jt interpolating between (s0;k; J0) and (s1;k; J1) in the following way :

for t 2 [0; 2
7
], let st;k = s0;k and Jt = J0 ; for t 2 [2

7
; 3
7
], let st;k = (3� 7t)s0;k

and Jt = J0 ; for t 2 [3
7
; 4
7
], let st;k = 0 and take Jt to be a path of !-

compatible almost-complex structures from J0 to J1 (recall that the space

of compatible almost-complex structures is connected) ; for t 2 [4
7
; 5
7
], let

st;k = (7t � 4)s1;k and Jt = J1 ; and for t 2 [5
7
; 1], let st;k = s1;k and

Jt = J1. Clearly, Jt and st;k depend continuously on t, and the sections st;k
are asymptotically Jt-holomorphic for all t 2 [0; 1].

Since -genericity is a local and C3-open property, there exists � > 0 such

that any section di�ering from s0;k by less than � in C3 norm is 
2
-generic,

and similarly for s1;k. Applying Propositions 1, 4, 5 and 7, we get for all
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large k asymptotically Jt-holomorphic sections �t;k which are �-generic for

some � > 0, and such that j�t;k � st;kjC3;gk < � for all t 2 [0; 1].

We now set s0t;k = s0;k for t 2 [0; 1
7
] ; s0t;k = (2� 7t)s0;k + (7t� 1)� 2

7
;k for

t 2 [1
7
; 2
7
] ; s0t;k = �t;k for t 2 [2

7
; 5
7
] ; s0t;k = (7t � 5)s1;k + (6 � 7t)� 5

7
;k for

t 2 [5
7
; 6
7
] ; and s0t;k = s1;k for t 2 [6

7
; 1]. By construction, the sections s0t;k

are asymptotically Jt-holomorphic for all t 2 [0; 1] and depend continuously

on t. Moreover, they are 
2
-generic for t 2 [0; 2

7
] because s0t;k then lies within

� in C3 norm of s0;k, and similarly for t 2 [5
7
; 1] because s0t;k then lies within

� in C3 norm of s1;k. They are also �-generic for t 2 [2
7
; 5
7
] because s0t;k is

then equal to �t;k. Therefore the sections s
0
t;k are �

0-generic for all t 2 [0; 1],

where �0 = min(�; 
2
).

Next, we apply Proposition 8 to the sections s0t;k : since s0
0;k = s0;k

and s0
1;k = s1;k are already �@-tame, and since the families s0t;k and Jt are

constant over [0; 1
7
] and [6

7
; 1], one can require of the sections s00t;k given by

Proposition 8 that s00
0;k = s0

0;k = s0;k and s
00
1;k = s0

1;k = s1;k. Finally, we apply

Proposition 9 to the sections s00t;k to obtain sections �
00
t;k which simultaneously

have genericity and �@-tameness properties. Since s00
0;k and s00

1;k are already
�@-tame, one can require that �00

0;k = s00
0;k = s0;k and �00

1;k = s00
1;k = s1;k.

The sections �00t;k interpolating between s0;k and s1;k therefore satisfy all the

required properties, which ends the proof of Theorem 4.

5. Generic tame maps and branched coverings

5.1. Structure near cusp points. In order to prove Theorem 3, we need

to check that, given any generic and �@-tame asymptotically holomorphic sec-

tions sk of C
3 
Lk, the corresponding projective maps fk = Psk : X ! C P

2

are, at any point of X, locally approximately holomorphically modelled on

one of the three model maps of De�nition 2. We start with the case of the

neighborhood of a cusp point.

Let x0 2 X be a cusp point of fk, i.e. an element of C ~Jk(sk), where ~Jk is

the almost-complex structure involved in the de�nition of �@-tameness. By

de�nition, ~Jk di�ers from J by O(k�1=2) and is integrable over a neighbor-

hood of x0, and fk is ~Jk-holomorphic over a neighborhood of x0. Therefore,

choose ~Jk-holomorphic local complex coordinates on X near x0, and local

complex coordinates on C P
2 near fk(x0) : the map h corresponding to fk in

these coordinate charts is, locally, holomorphic. Because the coordinate map

on X is within O(k�1=2) of being J-holomorphic, we can restrict ourselves

to the study of the holomorphic map h = (h1; h2) de�ned over a neighbor-

hood of 0 in C 2 with values in C 2 , which satis�es transversality properties

following from the genericity of sk. Our aim will be to show that, composing

h with holomorphic local di�eomorphisms of the source space C 2 or of the

target space C 2 , we can get h to be of the form (z1; z2) 7! (z3
1
� z1z2; z2)

over a neighborhood of 0.

First, because j@fkj is bounded from below and x0 is a cusp point, the

derivative @h(0) does not vanish and has rank one. Therefore, composing
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with a rotation of the target space C 2 if necessary, we can assume that its

image is directed along the second coordinate, i.e. Im (@h(0)) = f0g � C .

Calling Z1 and Z2 the two coordinates on the target space C 2 , it fol-

lows immediately that the function z2 = h�Z2 over the source space has a

non-vanishing di�erential at 0, and can therefore be considered as a local

coordinate function on the source space. Choose z1 to be any linear function

whose di�erential at the origin is linearly independent with dz2(0), so that

(z1; z2) de�ne holomorphic local coordinates on a neighborhood of 0 in C 2 .

In these coordinates, h is of the form (z1; z2) 7! (h1(z1; z2); z2) where h1 is

a holomorphic function such that h1(0) = 0 and @h1(0) = 0.

Next, notice that, because Jac(fk) vanishes transversely at x0, the quan-

tity Jac(h) = det(@h) = @h1=@z1 vanishes transversely at the origin, i.e.�
@2h1

@z2
1

(0);
@2h1

@z1@z2
(0)

�
6= (0; 0):

Moreover, an argument similar to that of x3.2 shows that locally, because

we have arranged for j@h2j to be bounded from below, the ratio between the

quantities T (sk) and T̂ = @h2 ^ @Jac(h) is bounded from above and below.

In particular, the fact that x0 2 C ~Jk(sk) implies that the restriction of T̂ to

the set of branch points vanishes transversely at the origin.

In our case, T̂ = dz2^@(@h1@z1
) = �(@2h1=@z21) dz1^dz2. Therefore, the van-

ishing of T̂ (0) implies that @2h1=@z21 (0) = 0. It follows that @2h1=@z1@z2 (0)

must be non-zero ; rescaling the coordinate z1 by a constant factor if neces-

sary, this derivative can be assumed to be equal to �1. Therefore, the map
h can be written as

h(z1; z2) = (�z1z2 + �z2
2
+O(jzj3); z2)

= (�z1z2 + �z2
2
+ �z3

1
+ �z2

1
z2 + z1z

2

2
+ Æz3

2
+O(jzj4); z2)

where �, �, �,  and Æ are complex coeÆcients.

We now consider the following coordinate changes : on the target space

C 2 , de�ne  (Z1; Z2) = (Z1 � �Z2

2
� ÆZ3

2
; Z2), and on the source space C 2 ,

de�ne �(z1; z2) = (z1 + �z2
1
+ z1z2; z2). Clearly, these two maps are local

di�eomorphisms near the origin. Therefore, one can replace h by  Æ h Æ �,
which has the e�ect of killing most terms of the above expansion : this

allows us to consider that h is of the form

h(z1; z2) = (�z1z2 + �z3
1
+O(jzj4); z2):

Next, recall that the set of branch points is, in our local setting, the set of

points where Jac(h) = @h1=@z1 = �z2+3�z2
1
+O(jzj3) vanishes. Therefore,

the tangent direction to the set of branch points at the origin is the z1 axis,

and the transverse vanishing of T̂ at the origin implies that @
@z1
T̂ (0) 6= 0.

Using the above formula for T̂ , we conclude that @3h1=@z31 6= 0, i.e. � 6= 0.

Rescaling the two coordinates z1 and Z1 by a constant factor, we can

assume that � is equal to 1. Therefore, we have used all the transversality

properties of h to show that, on a neighborhood of x0, it is of the form

h(z1; z2) = (�z1z2 + z3
1
+O(jzj4); z2):
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The uniform bounds and transversality estimates on sk can be used to show

that all the rescalings and transformations we have used are \nice", i.e. they

have bounded derivatives and their inverses have bounded derivatives.

Our next task is to show that further coordinate changes can kill the

higher order terms still present in the expression of h. For this, we �rst

prove the following lemma :

Lemma 9. Let D be the space of holomorphic local di�eomorphisms of C 2

near the origin, and let H be the space of holomorphic maps from a neigh-

borhood of 0 in C 2 to a neighborhood of 0 in C 2 . Let h0 2 H be the map

(x; y) 7! (x3 � xy; y). Then the di�erential at the point (Id; Id) of the map

F : D �D ! H de�ned by F(�;	) = 	 Æ h0 Æ � is surjective.

Proof. Let � = (�1; �2) and  = ( 1;  2) be two tangent vectors to D at Id

(i.e. holomorphic functions over a neighborhood of 0 in C 2 with values in

C 2). The di�erential of F at (Id; Id) is given by

DF(Id;Id)(�;  )(x; y) =
d

dt jt=0

h
(Id + t ) Æ h0 Æ (Id + t�)(x; y)

i
=
�
 1(x

3�xy; y)+(3x2�y)�1(x; y)�x�2(x; y);  2(x3�xy; y)+�2(x; y)
�
:

Proving the surjectivity of DF at (Id; Id) is equivalent to checking that,

given any tangent vector (�1; �2) 2 Th0H (i.e. a holomorphic function over a

neighborhood of 0 in C 2 with values in C 2 ), there exist � and  such that

DF(Id;Id)(�;  )(x; y) = (�1(x; y); �2(x; y)). Projecting this equality on the

second factor, one gets

 2(x
3 � xy; y) + �2(x; y) = �2(x; y);

which implies that �2(x; y) = �2(x; y) �  2(x
3 � xy; y). Replacing �2 by its

expression in the �rst component, and setting �(x; y) = �1(x; y) + x �2(x; y),

the equation which we need to solve �nally rewrites as

 1(x
3 � xy; y) + x 2(x

3 � xy; y) + (3x2 � y)�1(x; y) = �(x; y);

where the parameter � can be any holomorphic function, and  1,  2 and �1
are the unknown quantities.

Solving this equation is a priori diÆcult, so in order to get an idea of the

general solution it is best to �rst work in the ring of formal power series in

the two variables x and y. Since the equation is linear, it is suÆcient to �nd

a solution when � is a monomial of the form �(x; y) = xpyq with (p; q) 2 N2 .

First note that, for �(x; y) = yq (i.e. when p = 0), a trivial solution is given

by  1(x
3�xy; y) = yq,  2 = 0 and �1 = 0. Next, remark that, if there exists

a solution for a given �(x; y), then there also exists a solution for x �(x; y) :

indeed, if  1(x
3�xy; y)+x 2(x3�xy; y)+(3x2�y)�1(x; y) = �(x; y), then

setting ~ 1 =
1

3
y  2, ~ 2 =  1 and ~�1(x; y) = x�1(x; y) +

1

3
 2(x

3 � xy; y) one
gets

~ 1(x
3 � xy; y) + x ~ 2(x

3 � xy; y) + (3x2 � y) ~�1(x; y) = x �(x; y):

Therefore, by induction on p, the equation has a solution for all mono-

mials xpyq, and by linearity there exists a formal solution for all power
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series �(x; y). A short calculation gives the following explicit solution of the

equation for �(x; y) = xpyq : if p = 2k is even,

 1(x
3 � xy; y) = 3�kyk+q;  2 = 0; �1(x; y) =

k�1X
j=0

3�(j+1)yj+qx2k�2�2j;

and if p = 2k + 1 is odd,

 1 = 0;  2(x
3 � xy; y) = 3�kyk+q; �1(x; y) =

k�1X
j=0

3�(j+1)yj+qx2k�1�2j:

In particular,  1 and  2 actually only depend on the second variable y.

The above formulae make it possible to compute a general solution for

any holomorphic �, given by the following expressions, where + and � are

by de�nition the two square roots of 1

3
y (exchanging + and � clearly does

not a�ect the result) :

 1(x
3 � xy; y) = 1

2

�
�(+; y) + �(�; y)

�
;

 2(x
3 � xy; y) = 1

2+

�
�(+; y)� �(�; y)

�
;

�1(x; y) =
1

6+

�
�(x; y)� �(+; y)

x� +
� �(x; y)� �(�; y)

x� �

�
:

Note that these functions are actually smooth, although they depend on

� which are not smooth functions of y, because the odd powers of � cancel

each other in the expressions. Similarly, one easily checks that, when y ! 0

or x ! �, the vanishing of a term in the formula for �1 always makes up

for the singularity of the denominator, so that �1 is actually well-de�ned

everywhere. Another way to see these smoothness properties is to observe

that, because these formulae are simply a rewriting of the formal solution

computed previously for power series, the functions they de�ne admit power

series expansions at the origin. Lemma 9 is therefore proved.

Lemma 9 implies the desired result. Indeed, endow the space of holo-

morphic maps from a neighborhood D of 0 in C 2 to C 2 with a structure of

Hilbert space given by a suitable Sobolev norm, e.g. the L2
4
norm which is

stronger than the C1 norm : then, since the di�erential at (Id; Id) of F is a

surjective continuous linear map, the submersion theorem for Hilbert spaces

implies the existence of a constant � > 0 with the property that, given any

holomorphic function � such that j�jL2
4
(D) < �, there exist holomorphic local

di�eomorphisms � and 	 of C 2 near 0, L2
4
-close to the identity, such that

	 Æ h0 Æ � = h0 + �.

Recall that we are trying to remove the higher order terms from h(z1; z2) =

(z3
1
� z1z2 + �(z1; z2); z2), where �(z1; z2) = O(jzj4). There is no reason for

the L2
4
norm of � to be smaller than � over the �xed domain D. However the

required bound can be achieved by rescaling all the coordinates : let � be

a small positive constant, and consider the di�eomorphisms �� : (z1; z2) 7!
(�z1; �

2z2) of the source space and 	� : (Z1; Z2) 7! (��3Z1; �
�2Z2) of the

target space. Then we have 	� Æ h0 Æ �� = h0, and 	� Æ h Æ ��(z1; z2) =

(z3
1
� z1z2 + ~��(z1; z2); z2) where ~��(z1; z2) = ��3�(�z1; �

2z2).

Let R be a constant such that D � B(0; R), and let Æ > 0 be a constant

such that Æ2(1+R2+R4+R6+R8) vol(D) < �2. It follows from the bound

jr4~��(z1; z2)j � � jr4�(�z1; �
2z2)j that, if � is small enough, the fourth
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derivative of ~�� remains smaller than Æ over D. Since ~�� and its �rst three

derivatives vanish at the origin, by integrating the bound jr4~��j < Æ one

gets that j~��jL2
4
(D) < �. Therefore, if � is small enough there exist local

di�eomorphisms ~� and ~	 such that ~	Æh0 Æ ~� = 	� ÆhÆ�� over the domain

D. Equivalently, setting 	 = 	�1� Æ ~	 Æ	� and � = �� Æ ~� Æ ��1� , we have

	 Æ h0 Æ � = h over a small neighborhood of 0 in C 2 , which is what we

wanted to prove.

Moreover, because of the uniform transversality estimates and bounds on

the derivatives of sk, the derivatives of h are uniformly bounded. Therefore

one can choose the constant � to be independent of k and of the given point

x0 2 C ~Jk(sk) : it follows that the neighborhood of x0 over which the map

fk has been shown to be O(k�1=2)-approximately holomorphically modelled

on the map h0 can be assumed to contain a ball of �xed radius (depending

on the bounds and transversality estimates, but independent of x0 and k).

5.2. Structure near generic branch points. We now consider a branch

point x0 2 R ~Jk
(sk), which we assume to be at distance more than a �xed

constant Æ from the set of cusp points C ~Jk(sk). We want to show that, over

a neighborhood of x0, fk = Psk is approximately holomorphically modelled

on the map (z1; z2) 7! (z2
1
; z2).

From now on, we implicitly use the almost-complex structure ~Jk and write

R for the intersection of R ~Jk
(sk) with the ball Bgk(x0;

Æ
2
). First note that,

since R remains at distance more than Æ
2
from the cusp points, the tangent

space to R remains everywhere away from the kernel of @fk. Therefore, the

restriction of fk to R is a local di�eomorphism over a neighborhood of x0,

and so fk(R) is locally a smooth approximately holomorphic submanifold

in C P
2. It follows that there exist approximately holomorphic coordinates

(Z1; Z2) on a neighborhood of fk(x0) in C P
2 such that fk(R) is locally de�ned

by the equation Z1 = 0.

De�ne the approximately holomorphic function z2 = f�kZ2 over a neigh-

borhood of x0, and notice that its di�erential dz2 = dZ2Ædfk does not vanish,
because by construction Z2 is a coordinate on fk(R). Therefore, z2 can be

considered as a local complex coordinate function on a neighborhood of x0.

In particular, the level sets of z2 are smooth and intersect R transversely at

a single point.

Take z1 to be an approximately holomorphic function on a neighborhood

of x0 which vanishes at x0 and whose di�erential at x0 is linearly independent

with that of z2 (e.g. take the two di�erentials to be mutually orthogonal),

so that (z1; z2) de�ne approximately holomorphic coordinates on a neigh-

borhood of x0. From now on we use the local coordinates (z1; z2) on X and

(Z1; Z2) on C P
2.

Because dz2jTR remains away from 0, R has locally an equation of the

form z1 = �(z2) for some approximately holomorphic function � (satisfying

�(0) = 0 since x0 2 R). Therefore, shifting the coordinates on X in order to

replace z1 by z1��(z2), one can assume that z1 = 0 is a local equation of R.

In the chosen local coordinates, fk is therefore modelled on an approximately

holomorphic map h from a neighborhood of 0 in C 2 with values in C 2 , of

the form (z1; z2) 7! (h1(z1; z2); z2), with the following properties.
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First, because R = fz1 = 0g is mapped to fk(R) = fZ1 = 0g, we have
h1(0; z2) = 0 for all z2. Next, recall that the di�erential of fk has real rank

2 at any point of R (because @fk has complex rank 1 and �@fk vanishes over

the kernel of @fk), so its image is exactly the tangent space to fk(R). It

follows that rh1 = 0 at every point (0; z2) 2 R.
Finally, because the chosen coordinates are approximately holomorphic

the quantity Jac(fk) is within O(k
�1=2) of det(@h) = (@h1=@z1) @z1^@z2 by

O(k�1=2). Therefore, the transversality to 0 of Jac(fk) implies that, along R,

the norm of (@2h1=@z
2

1
; @2h1=@z1@z2) remains larger than a �xed constant.

However @2h1=@z1@z2 vanishes at any point of R because @h1=@z1 (0; z2) = 0

for all z2. Therefore the quantity @2h1=@z
2

1
remains bounded away from 0

on R.

The above properties imply that h can be written as

h(z1; z2) =
�
�(z2)z

2

1
+ �(z2)z1�z1 + (z2)�z

2

1
+ �(z1; z2); z2

�
;

where � is approximately holomorphic and bounded away from 0, while �

and  are O(k�1=2) (because of asymptotic holomorphicity), and �(z1; z2) =

O(jz1j3) is approximately holomorphic. Moreover, composing with the co-

ordinate change (Z1; Z2) 7! (�(Z2)
�1Z1; Z2) (which is approximately holo-

morphic and has bounded derivatives because � is bounded away from 0),

one reduces to the case where � is identically equal to 1.

We now want to reduce further the problem by removing the � and 

terms in the above expression : for this, we �rst remark that, given any

small enough complex numbers � and , there exists a complex number �,

of norm less than j�j+ jj and depending smoothly on � and , such that

� = ���+ �

2
(1 + j�j2):

Indeed, if j�j+ jj < 1

2
the right hand side of this equation is a contracting

map of the unit disc to itself, so the existence of a solution � in the unit disc

follows immediately from the �xed point theorem. Furthermore, using the

bound j�j < 1 in the right hand side, one gets that j�j < j�j + jj. Finally,
the smooth dependence of � upon � and  follows from the implicit function

theorem.

Assuming again that j�j+ jj < 1

2
and de�ning � as above, let

A =
1� ��2

1� j�j4 and B =
 � �2

1� j�j4 :

The complex numbers A and B are also smooth functions of � and , and

it is clear that jA� 1j = O(j�j+ jj) and jBj = O(j�j+ jj). Moreover, one

easily checks that, in the ring of polynomials in z and �z,

A(z + ��z)2 +B(�z + ��z)2 = z2 + 2
�+ ��

1 + j�j2 z�z + �z2 = z2 + �z�z + �z2:

Therefore, if one assumes k to be large enough, recalling that the quanti-

ties �(z2) and (z2) which appear in the above expression of h are bounded

by O(k�1=2), there exist �(z2), A(z2) and B(z2), depending smoothly on z2,

such that jA(z2) � 1j = O(k�1=2), jB(z2)j = O(k�1=2), j�(z2)j = O(k�1=2)
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and

A(z2)(z1 + �(z2)�z1)
2 +B(z2)(z1 + �(z2)�z1)

2 = z2
1
+ �(z2)z1�z1 + (z2)�z

2

1
:

So, let h0 be the map (z1; z2) 7! (z2
1
; z2), and let � and 	 be the two ap-

proximately holomorphic local di�eomorphisms of C 2 de�ned by �(z1; z2) =

(z1 + �(z2)�z1; z2) and 	(Z1; Z2) = (A(Z2)Z1 +B(Z2) �Z1; Z2) : then

h(z1; z2) = 	 Æ h0 Æ �(z1; z2) + (�(z1; z2); 0):

It follows immediately that 	�1ÆhÆ��1(z1; z2) = (z2
1
+O(jz1j3); z2). There-

fore, this new coordinate change allows us to consider only the case where

h is of the form (z1; z2) 7! (z2
1
+ ~�(z1; z2); z2), where ~�(z1; z2) = O(jz1j3).

Because ~�(z1; z2) = O(jz1j3), the bound j~�(z1; z2)j < 1

2
jz1j2 holds over a

neighborhood of the origin whose size can be bounded from below indepen-

dently of k and x0 by using the uniform estimates on all derivatives. Over

this neighborhood, de�ne

�(z1; z2) = z1

s
1 +

~�(z1; z2)

z2
1

for z1 6= 0, where the square root is determined without ambiguity by the

condition that
p
1 = 1. Setting �(0; z2) = 0, it follows from the bound

j�(z1; z2)� z1j = O(jz1j2) that the function � is C1. In general � is not C2,

because ~� may contain terms involving �z2
1
z1 or �z

3

1
.

Because �(z1; z2) = z1 + O(jz1j2), the map � : (z1; z2) 7! (�(z1; z2); z2)

is a C1 local di�eomorphism of C 2 over a neighborhood of the origin. As

previously, the uniform bounds on all derivatives imply that the size of

this neighborhood can be bounded from below independently of k and x0.

Moreover, it follows from the asymptotic holomorphicity of sk that ~� has

antiholomorphic derivatives bounded by O(k�1=2), and so j�@�j = O(k�1=2).

Therefore � is O(k�1=2)-approximately holomorphic, and we have

h0 Æ�(z1; z2) = h(z1; z2);

which �nally gives the desired result.

5.3. Proof of Theorem 3. Theorem 3 follows readily from the above argu-

ments : indeed, consider -generic and �@-tame asymptotically holomorphic

sections sk of C
3 
Lk, and let ~Jk be the almost-complex structures involved

in the de�nition of �@-tameness. We need to show that, at any point x 2 X,

the maps fk = Psk are approximately holomorphically modelled on one of

the three maps of De�nition 2.

First consider the case where x lies close to a point y 2 C ~Jk(sk). The

argument of x5.1 implies the existence of a constant Æ > 0 independent of k

and y such that, over the ball Bgk(y; 2Æ), the map fk is
~Jk-holomorphically

modelled on the cusp covering map (z1; z2) 7! (z3
1
�z1z2; z2). If x lies within

distance Æ of y, Bgk(y; 2Æ) is a neighborhood of x ; therefore the expected

result follows at every point within distance Æ of C ~Jk(sk) from the observation

that, because j ~Jk � J j = O(k�1=2), the relevant coordinate chart on X is

O(k�1=2)-approximately J-holomorphic.

Next, consider the case where x lies close to a point y of R ~Jk
(sk) which

is itself at distance more than Æ from C ~Jk(sk). The argument of x5.2 then
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implies the existence of a constant Æ0 > 0 independent of k and y such that,

over the ball Bgk(y; 2Æ
0), the map fk is, in O(k

�1=2)-approximately holomor-

phic C1 coordinate charts, locally modelled on the branched covering map

(z1; z2) 7! (z2
1
; z2). Therefore, if one assumes the distance between x and y

to be less than Æ0, the given ball is a neighborhood of x, and the expected

result follows.

So we are left only with the case where x is at distance more than Æ0

from R ~Jk
(sk). Assuming k to be large enough, it then follows from the

bound j ~Jk�J j = O(k�1=2) that x is at distance more than 1

2
Æ0 from RJ(sk).

Therefore, the -transversality to 0 of Jac(fk) implies that jJac(fk)(x)j is
larger than � = min(1

2
Æ0; ) (otherwise, the downward gradient ow of

jJac(fk)j would reach a point of RJ(sk) at distance less than
1

2
Æ0 from x).

Recalling that j�@fkj = O(k�1=2), one gets that fk is a O(k�1=2)-approx-

imately holomorphic local di�eomorphism over a neighborhood of x. There-

fore, choose holomorphic complex coordinates on C P
2 near fk(x) and pull

them back by fk to obtain O(k
�1=2)-approximately holomorphic local coor-

dinates over a neighborhood of x : in these coordinates, the map fk becomes

the identity map, which ends the proof of Theorem 3.

6. Further remarks

6.1. Branched coverings of C P2. A natural question to ask about the

results obtained in this paper is whether the property of being a (singular)

branched covering of C P2, i.e. the existence of a map to C P2 which is locally

modelled at every point on one of the three maps of De�nition 2, strongly

restricts the topology of a general compact 4-manifold. Since the notion of

approximately holomorphic coordinate chart on X no longer has a mean-

ing in this case, we relax De�nition 2 by only requiring the existence of a

local identi�cation of the covering map with one of the model maps in a

smooth local coordinate chart on X. However we keep requiring that the

corresponding local coordinate chart on C P2 be approximately holomorphic,

so that the branch locus in C P2 remains an immersed symplectic curve with

cusps. Call such a map a topological singular branched covering of C P2.

Then the following holds :

Proposition 10. Let X be a compact 4-manifold and consider a topological

singular covering f : X ! C P
2 branched along a submanifold R � X. Then

X carries a symplectic structure arbitrarily close to f�!0, where !0 is the

standard symplectic structure of C P2.

Proof. The closed 2-form f�!0 on X de�nes a symplectic structure on X�R
which degenerates along R. Therefore, one needs to perturb it by adding

a small multiple of a closed 2-form with support in a neighborhood of R in

order to make it nondegenerate. This perturbation can be constructed as

follows.

Call C the set of cusp points, i.e. the points of R where the tangent space

to R lies in the kernel of the di�erential of f , or equivalently the points

around which f is modelled on the map (z1; z2) 7! (z3
1
� z1z2; z2). Consider

a point x 2 C, and work in local coordinates such that f identi�es with

the model map. In these coordinates, a local equation of R is z2 = 3z2
1
,
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and the kernel K of the di�erential of f coincides at every point of R with

the subspace C � f0g of the tangent space ; this complex identi�cation

determines a natural orientation of K. Fix a constant �x > 0 such that

BC (0; 2�x)�BC (0; 2�
2

x) is contained in the local coordinate patch, and choose

cut-o� functions �1 and �2 over C in such a way that �1 equals 1 over

BC (0; �x) and vanishes outside of BC (0; 2�x), and that �2 equals 1 over

BC (0; �
2

x) and vanishes outside of BC (0; 2�
2

x). Then, let  x be the 2-form

which equals d(�1(z1)�2(z2)x1 dy1) over the local coordinate patch, where

x1 and y1 are the real and imaginary parts of z1, and which vanishes over the

remainder of X : the 2-form  x coincides with dx1^dy1 over a neighborhood
of x. More importantly, it follows from the choice of the cut-o� functions

that the restriction of  x to K = C � f0g is non-negative at every point of

R, and positive non-degenerate at every point of R which lies suÆciently

close to x.

Similarly, consider a point x 2 R away from C and local coordinates

such that f identi�es with the model map (z1; z2) 7! (z2
1
; z2). In these

coordinates, R identi�es with f0g � C , and the kernel K of the di�erential

of f coincides at every point of R with the subspace C �f0g of the tangent
space. Fix a constant �x > 0 such that BC (0; 2�x)�BC (0; 2�x) is contained

in the local coordinate patch, and choose a cut-o� function � over C which

equals 1 over BC (0; �x) and 0 outside of BC (0; 2�x). Then, let  x be the

2-form which equals d(�(z1)�(z2)x1 dy1) over the local coordinate patch,

where x1 and y1 are the real and imaginary parts of z1, and which vanishes

over the remainder of X : as previously, the restriction of  x to K = C �f0g
is non-negative at every point of R, and positive non-degenerate at every

point of R which lies suÆciently close to x.

Choose a �nite collection of points xi of R (including all the cusp points) in

such a way that the neighborhoods of xi over which the 2-forms  xi restrict

positively to K cover all of R, and de�ne � as the sum of all the 2-forms

 xi . Then it follows from the above de�nitions that the 2-form � is exact,

and that at any point of R its restriction to the kernel of the di�erential of f

is positive and non-degenerate. Therefore, the 4-form f�!0 ^� is a positive

volume form at every point of R.

Now choose any metric on a neighborhood of R, and let dR be the distance

function to R. It follows from the compactness of X and R and from the

general properties of the map f that, using the orientation induced by f

and the chosen metric to implicitly identify 4-forms with functions, there

exist positive constants K, C, C 0 and M such that the following bounds

hold over a neighborhood of R : f�!0 ^ f�!0 � KdR, f
�!0 ^� � C �C 0dR,

and j� ^ �j � M . Therefore, for all � > 0 one gets over a neighborhood of

R the bound

(f�!0 + � �) ^ (f�!0 + � �) � (2�C � �2M) + (K � 2�C 0)dR:

If � is chosen suÆciently small, the coeÆcients 2�C��2M and K�2�C 0 are

both positive, which implies that the closed 2-form f�!0+ � � is everywhere

nondegenerate, and therefore symplectic.
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Another interesting point is the compatibility of our approximately holo-

morphic singular branched coverings with respect to the symplectic struc-

tures ! on X and !0 in C P
2 (as opposed to the compatibility with the

almost-complex structures, which has been a major preoccupation through-

out the previous sections).

It is easy to check that given a covering map f : X ! C P
2 de�ned by

a section of C 3 
 Lk, the number of preimages of a generic point is equal

to 1

4�2
k2(!2:[X]), while the homology class of the preimage of a generic

line C P1 � C P
2 is Poincar�e dual to 1

2�k[!]. If we normalize the standard

symplectic structure !0 on C P
2 in such a way that the symplectic area of a

line C P1 � C P
2 is equal to 2�, it follows that the cohomology class of f�!0

is [f�!0] = k[!].

As we have said above, the pull-back f�!0 of the standard symplectic

form of C P2 by the covering map degenerates along the set of branch points,

so there is no chance of (X; f�!0) being symplectic and symplectomorphic

to (X; k!). However, one can prove the following result which is nearly as

good :

Proposition 11. The 2-forms ~!t = tf�!0+ (1� t)k! on X are symplectic

for all t 2 [0; 1). Moreover, for t 2 [0; 1) the manifolds (X; ~!t) are all

symplectomorphic to (X; k!).

This means that f�!0 is, in some sense, a degenerate limit of the sym-

plectic structure de�ned by k! : therefore the covering map f behaves quite

reasonably with respect to the symplectic structures.

Proof. The 2-forms ~!t are all closed and lie in the same cohomology class.

We have to show that they are non-degenerate for t < 1. For this, let x be

any point of X and let v be a nonzero tangent vector at x. It is suÆcient

to prove that there exists a vector w 2 TxX such that !(v; w) > 0 and

f�!0(v; w) � 0 : then ~!t(v; w) > 0 for all t < 1, which implies the non-

degeneracy of ~!t.

Recall that, by de�nition, there exist local approximately holomorphic

coordinate maps � over a neighborhood of x and  over a neighborhood of

f(x) such that locally f =  �1 Æ g Æ � where g is a holomorphic map from a

subset of C 2 to C 2 . De�ne w = ��1� J0��v, where J0 is the standard complex

structure on C 2 : then we have w = (��J0)v and, because g is holomorphic,

f�w = ( �J0)f�v.

Because the coordinate maps are O(k�1=2)-approximately holomorphic,

we have jw � Jvj � Ck�1=2jvj and jf�w � J0f�vj � Ck�1=2jf�vj, where
C is a constant and J0 is the standard complex structure on C P

2. It

follows that !(v; w) � jvj2 � Ck�1=2jvj2 > 0, and that !0(f�v; f�w) �
jf�vj2 � Ck�1=2jf�vj2 � 0. Therefore, ~!t(v; w) > 0 for all t 2 [0; 1) ; since

the existence of such a w holds for every nonzero vector v, this proves that

the closed 2-forms ~!t are non-degenerate, and therefore symplectic.

Moreover, these symplectic forms all lie in the cohomology class [k!],

so it follows from Moser's stability theorem that the symplectic structures

de�ned on X by ~!t for t 2 [0; 1) are all symplectomorphic.

6.2. Symplectic Lefschetz pencils. The techniques used in this paper

can also be applied to the construction of sections of C 2 
 Lk (i.e. pairs of
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sections of Lk) satisfying appropriate transversality properties : this is the

existence result for Lefschetz pencil structures (and uniqueness up to isotopy

for a given value of k) obtained by Donaldson [3].

For the sake of completeness, we give here an overview of a proof of

Donaldson's theorem using the techniques described in the above sections.

Let (X;!) be a compact symplectic manifold (of arbitrary dimension 2n)

such that 1

2� [!] is integral, and as before consider a compatible almost-

complex structure J , the corresponding metric g, and the line bundle L

whose �rst Chern class is 1

2� [!], endowed with a Hermitian connection of

curvature �i!. The required properties of the sections we wish to construct
are determined by the following statement :

Proposition 12. Let sk = (s0k; s
1

k) be asymptotically holomorphic sections

of C 2 
 Lk over X for all large k, which we assume to be �-transverse to

0 for some � > 0. Let Fk = s�1k (0) (it is a real codimension 4 symplectic

submanifold of X), and de�ne the map fk = Psk = (s0k : s1k) from X � Fk
to C P

1. Assume furthermore that @fk is �-transverse to 0, and that �@fk
vanishes at every point where @fk = 0. Then, for all large k, the section sk
and the map fk de�ne a structure of symplectic Lefschetz pencil on X.

Indeed, Fk corresponds to the set of base points of the pencil, while the

hypersurfaces (�k;u)u2CP1 forming the pencil are �k;u = f�1k (u) [ Fk, i.e.
�k;u is the set of all points where (s

0

k; s
1

k) belongs to the complex line in C 2

determined by u. The transversality to 0 of sk gives the expected pencil

structure near the base points, and the asymptotic holomorphicity implies

that, near any point of X�Fk where @fk is not too small, the hypersurfaces
�k;u are smooth and symplectic (and even approximately J-holomorphic).

Moreover, the transversality to 0 of @fk implies that @fk becomes small

only in the neighborhood of �nitely many points where it vanishes, and that

at these points the holomorphic Hessian @@fk is large enough and nonde-

generate. Because �@fk also vanishes at these points, an argument similar to

that of x5.2 shows that, near its critical points, fk behaves like a complex

Morse function, i.e. it is locally approximately holomorphically modelled on

the map (z1; : : : ; zn) 7!
P
z2i from C n to C .

The approximate holomorphicity of fk and its structure at the critical

points can be easily shown to imply that the hypersurfaces �k;u are all

symplectic, and that only �nitely many of them have isolated singular points,

which correspond to the critical points of fk and whose structure is therefore

completely determined.

Therefore, the construction of a Lefschetz pencil structure on X can be

carried out in three steps. The �rst step is to obtain for all large k sections

sk of C
2
Lk which are asymptotically holomorphic and transverse to 0 : for

example, the existence of such sections follows immediately from the main

result of [1]. As a consequence, the required properties are satis�ed on a

neighborhood of Fk = s�1k (0).

The second step is to perturb sk, away from Fk, in order to obtain the

transversality to 0 of @fk. For this purpose, one uses an argument similar to

that of x2.2, but where Proposition 2 has to be replaced by a similar result for
approximately holomorphic functions de�ned over a ball of C n with values in



SYMPLECTIC 4-MANIFOLDS AS BRANCHED COVERINGS OF CP
2

47

C n which has been announced by Donaldson (see [3]). Over a neighborhood

of any given point x 2 X � Fk, composing with a rotation of C 2 in order to

ensure the nonvanishing of s0k over a ball centered at x and de�ning hk =

(s0k)
�1s1k, one remarks that the transversality to 0 of @fk is locally equivalent

to that of @hk. Choosing local approximately holomorphic coordinates zik,

it is possible to write @hk as a linear combination
Pn

i=1 u
i
k�

i
k of the 1-forms

�ik = @(zik:(s
0

k)
�1srefk;x). The existence of wk 2 C n of norm less than a given

Æ ensuring the transversality to 0 of uk � wk over a neighborhood of x is

then given by the suitable local transversality result, and it follows easily

that the section (s0k; s
1

k �
P
wi
kz

i
ks

ref

k;x) satis�es the required transversality

property over a ball around x. The global result over the complement in X

of a small neighborhood of Fk then follows by applying Proposition 3.

An alternate strategy allows one to proceed without proving the local

transversality result for functions with values in C n , if one assumes s0k and

s1k to be linear combinations of sections with uniform Gaussian decay (this

is not too restrictive since the iterative process described in [1] uses precisely

the sections srefk;x as building blocks). In that case, it is possible to locally

trivialize the cotangent bundle T �X, and therefore work component by com-

ponent to get the desired transversality result ; in a manner similar to the

argument of [1], one uses Lemma 6 to reduce the problem to the transver-

sality of sections of line bundles over submanifolds of X, and Proposition

6 as local transversality result. The assumption on sk is used to prove the

existence of asymptotically holomorphic sections which approximate sk very

well over a neighborhood of a given point x 2 X and have Gaussian decay

away from x : this makes it possible to �nd perturbations with Gaussian

decay which at the same time behave nicely with respect to the trivializa-

tion of T �X. This way of obtaining the transversality to 0 of @fk is very

technical, so we don't describe the details.

The last step in the proof of Donaldson's theorem is to ensure that �@fk
vanishes at the points where @fk vanishes, by perturbing sk by O(k

�1=2) over

a neighborhood of these points. The argument is a much simpler version

of x4.2 : on a neighborhood of a point x where @fk vanishes, one de�nes

a section � of f�kT C P
1 by �(expx(�)) = �(j�j) �@fk(x)(�), where � is a cut-

o� function, and one uses � as a perturbation of sk in order to cancel the

antiholomorphic derivative at x.

6.3. Symplectic ampleness. We have seen that similar techniques apply

in various situations involving very positive bundles over a compact sym-

plectic manifold, such as constructing symplectic submanifolds ([2],[1]), Lef-

schetz pencils [3], or covering maps to C P
2. In all these cases, the result is

the exact approximately holomorphic analogue of a classical result of com-

plex projective geometry. Therefore, it is natural to wonder if there exists

a symplectic analogue of the notion of ampleness : for example, the line

bundle L endowed with a connection of curvature �i !, when raised to a

suÆciently large power, admits many approximately holomorphic sections,

and so it turns out that some of these sections behave like generic sections

of a very ample bundle over a complex projective manifold.

Let (X;!) be a compact 2n-dimensional symplectic manifold endowed

with a compatible almost-complex structure, and �x an integer r : it seems
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likely that any suÆciently positive line bundle over X admits r+1 approx-

imately holomorphic sections whose behavior is similar to that of generic

sections of a very ample line bundle over a complex projective manifold of

dimension n. For example, the zero set of a suitable section is a smooth ap-

proximately holomorphic submanifold of X ; two well-chosen sections de�ne

a Lefschetz pencil ; for r = n, one expects that n + 1 well-chosen sections

determine an approximately holomorphic singular covering X ! C P
n (this

is what we just proved for n = 2) ; for r = 2n, it should be possible to con-

struct an approximately holomorphic immersion X ! C P
2n, and for r > 2n

a projective embedding. Moreover, in all known cases, the space of \good"

sections is connected when the line bundle is suÆciently positive, so that

the structures thus de�ned are in some sense canonical up to isotopy.

However, the constructions tend to become more and more technical when

one gets to the more sophisticated cases, and the development of a general

theory of symplectic ampleness seems to be a necessary step before the re-

lations between the approximately holomorphic geometry of compact sym-

plectic manifolds and the ordinary complex projective geometry can be fully

understood.
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