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CHAPITRE I

Introduction

1. Introduction

Une approche de la topologie symplectique qui s'est révélée extrêmement fruc-
tueuse au �l des années a pour point de départ l'observation suivante : toute variété
symplectique (X;!) peut être munie d'une structure presque-complexe compatible
avec la structure symplectique, c'est-à-dire un endomorphisme J du �bré tangent

TX, véri�ant J2 = �1, et tel que la forme bilinéaire g(x; y) = !(x; Jy) dé�nit une
métrique riemannienne sur X (voir par exemple [McS1], p. 116).

L'étude des variétés symplectiques se présente alors comme une généralisation
naturelle de la géométrie kählérienne : en e�et la variété X est kählérienne dès lors
que la structure presque-complexe J est intégrable, c'est-à-dire permet de dé�nir

localement des coordonnées complexes sur X. Les variétés kählériennes fournissent
un grand nombre d'exemples de variétés symplectiques, puisqu'elles englobent entre
autres toutes les variétés algébriques projectives complexes. Toutefois, de nom-
breuses variétés symplectiques n'admettant pas de structure kählérienne ont été

construites, notamment par Thurston [Th] et plus récemment par Gompf [Go].
La donnée d'une structure presque-complexe J sur X conduit naturellement à

étudier les sous-variétés de X dont l'espace tangent est en tout point J-invariant,
c'est-à-dire un sous-espace complexe de l'espace tangent à X. Pour un choix géné-

rique de la structure presque-complexe compatible avec !, de telles sous-variétés
n'existent qu'en dimension complexe 1 : ce sont les célèbres courbes pseudo-holo-
morphes, introduites par Gromov [Gro1] et dont la théorie a connu de constants
développements (voir par exemple [McS2]).

Un autre exemple frappant de l'analogie entre variétés symplectiques compactes

et variétés kählériennes compactes est donné par les invariants de Seiberg-Witten
(voir par exemple [Mor]), dont l'interprétation en termes de courbes pseudo-holo-
morphes récemment obtenue par Taubes ([T1], [T2] et suivants) pour les variétés
symplectiques présente des similarités remarquables avec l'interprétation en termes

de courbes complexes donnée par Witten [W] pour les variétés kählériennes.

Néanmoins, certaines constructions de géométrie algébrique complexe semblaient
jusqu'à récemment ne pas pouvoir être transposées dans un contexte symplectique :

ainsi, le lieu d'annulation d'une section holomorphe générique d'un �bré très ample
sur une variété projective complexe dé�nit une sous-variété complexe, tandis que la
construction analogue ne fonctionne pas en géométrie presque complexe.

L'idée introduite par Donaldson [D1] consiste à autoriser de petites variations de
la structure presque-complexe : ainsi, une structure presque-complexe J compatible

avec ! étant �xée, il s'agit de construire non pas des sous-variétés J-holomorphes
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4 I. INTRODUCTION

(qui n'existent en général pas au-delà de la dimension 1), mais plutôt des sous-
variétés approximativement J-holomorphes. De telles sous-variétés sont obtenues
comme lieux d'annulation de sections approximativement holomorphes de �brés

convenablement choisis : l'observation fondamentale de Donaldson est que, de même
qu'un �bré holomorphe su�samment positif sur une variété projective admet un
grand nombre de sections holomorphes, un �bré en droites su�samment positif sur
une variété symplectique compacte admet de nombreuses sections approximative-
ment holomorphes. Toutefois, contrairement au cas projectif où un argument facile

de transversalité permet d'obtenir immédiatement des hypersurfaces complexes, un
raisonnement assez long est nécessaire pour prouver l'existence d'une section dont
les propriétés de transversalité à la section nulle garantissent que le lieu d'annulation
est une sous-variété lisse et approximativement J-holomorphe.

Il est aisé de véri�er qu'une sous-variété approximativement J-holomorpheW �
X est symplectique, c'est-à-dire que la restriction de ! munit W d'une structure
symplectique. En outre, il existe une structure presque-complexe J

0 compatible
avec !, proche de J (mais dépendant de W ), telle que W soit une sous-variété

J
0-holomorphe de X. Un intérêt majeur du résultat de Donaldson est donc de

fournir le premier procédé général de construction d'hypersurfaces symplectiques
(codimension réelle 2) dans une variété symplectique compacte arbitraire [D1].

Dans [A1] (voir aussi �2 et chapitre II), ce résultat a été étendu au cas de �brés
de rang supérieur : la construction de sections approximativement holomorphes

véri�ant des propriétés convenables de transversalité permet alors d'obtenir des
sous-variétés symplectiques (approximativement J-holomorphes) de codimension
quelconque, dont on détermine mieux le type topologique que par simple itération
du résultat de [D1]. Il a de plus été établi que, en dépit de la grande �exibilité de

la construction de Donaldson, les sous-variétés que l'on est susceptible d'obtenir à
partir de sections approximativement holomorphes d'un �bré su�samment positif
donné sont uniques à isotopie symplectique près [A1] (cf. �2 et chapitre II) ; en
outre, ce résultat reste vrai même si l'on fait varier la structure presque-complexe.

Cela signi�e que les sous-variétés symplectiques construites à partir de �brés suf-
�samment positifs peuvent être utilisées pour dé�nir des invariants symplectiques
de la variété considérée : ainsi des invariants topologiques dé�nis pour des variétés
de petite dimension (par exemple ceux de Seiberg-Witten en dimension 4) peuvent
être utilisés pour caractériser des variétés symplectiques de dimension supérieure.

D'autres résultats classiques de géométrie projective complexe peuvent être
transposés à la géométrie symplectique de façon similaire. Ainsi, Donaldson a été le
premier à montrer que deux sections approximativement holomorphes convenable-
ment choisies d'un �bré en droites su�samment positif déterminent une structure

de pinceau de Lefschetz symplectique sur une variété symplectique compacte [D2].
Une telle structure est l'analogue symplectique de la notion classique de pinceau
de Lefschetz algébrique : la variété considérée est remplie par une famille d'hyper-
surfaces symplectiques indexées par C P1, s'intersectant le long d'une sous-variété

symplectique lisse de codimension (réelle) 4 (les �points base�), toutes les hypersur-
faces du pinceau étant lisses excepté un nombre �ni d'entre elles dont les points
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singuliers sont isolés et relativement simples (des points doubles à croisement nor-
mal dans le cas de la dimension 4) ; après éclatement le long des points base, on

obtient une �bration de Lefschetz symplectique au-dessus de C P1. Outre [D2], on

pourra se référer au �6.2 du chapitre III où est esquissée une preuve du résultat
utilisant les arguments de [A1] et [A2], ainsi qu'au texte de Sikorav [Si] ; en�n, une
étude poussée des pinceaux de Lefschetz symplectiques en dimension 4 se trouve
dans [BK].

Dans le même esprit, il a été établi dans [A2] (voir aussi �3 et chapitre III) que
toute variété symplectique compacte X de dimension 4 peut être vue comme un
revêtement rami�é (singulier) de C P2 : le revêtement est déterminé par trois sections
approximativement holomorphes soigneusement choisies d'un �bré en droites très
positif sur X. De plus, le choix d'un �bré en droites su�samment positif détermine

canoniquement une classe d'isotopie de revêtements rami�és (singuliers) X ! C P
2,

indépendamment de la structure presque-complexe compatible considérée [A2]. Il
semble probable que de nombreux autres résultats classiques de géométrie projective
admettent de la même façon des analogues symplectiques.

Le reste de ce chapitre a pour but de donner un aperçu des principaux résultats

obtenus au cours de la réalisation de ce travail, et de les illustrer par divers exemples.
Les énoncés décrits ci-dessous sont formulés de façon plus précise et démontrés dans
les chapitres II et III ([A1] et [A2]). On pourra également se référer à [D1] pour
l'argument original de Donaldson, ainsi qu'à [Si] pour une synthèse des résultats de

[D1], [A1] et [D2].

2. Sous-variétés symplectiques : énoncés et exemples

Soit (X;!) une variété symplectique compacte de dimension 2n. On fera dans
tout ce qui suit l'hypothèse que la classe de cohomologie 1

2�
[!] 2 H

2(X;R) est

entière. Cette condition d'intégralité n'est pas une restriction très forte, car dans
tous les cas il existe des formes symplectiques !0 arbitrairement proches de ! et
qui, après multiplication par un facteur entier, véri�ent la condition requise. Une
structure presque-complexe J compatible avec ! et la métrique riemannienne cor-

respondante g sont également �xées.
Soit L le �bré en droites complexes sur X dont la classe de Chern est c1(L) =

1
2�
[!], muni d'une métrique hermitienne et d'une connexion hermitienne rL dont

la 2-forme de courbure est égale à �i! (l'existence d'une telle connexion est facile

à établir : la courbure d'une connexion hermitienne quelconque r sur L di�ère de
�i! par une 2-forme exacte qui peut se mettre sous la forme i da avec a 2 
1(X;R) ;
on peut alors choisir rL = r + i a). L'observation fondamentale est que, pour des
valeurs su�samment grandes du paramètre entier k, le �bré en droites Lk admet de

nombreuses sections approximativement holomorphes, qui déterminent un plonge-
ment approximativement holomorphe de X dans un espace projectif : il s'agit d'un
analogue symplectique de la construction classique de Kodaira (voir par exemple
[GH], �1.4). L'intuition dicte alors qu'un hyperplan convenablement choisi doit, par
intersection avec X, déterminer une sous-variété symplectique approximativement

J-holomorphe de X. La formulation rigoureuse de cette construction (voir [D1])
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nécessite l'introduction des notions d'holomorphie asymptotique et de transversalité
uniforme à 0 d'une famille de sections.

Soient (Ek)k�0 des �brés vectoriels complexes sur X, tous munis d'une métrique

hermitienne et d'une connexion hermitienne. La structure presque-complexe J sur
X et la connexion sur Ek déterminent des opérateurs @ et �@ sur Ek.

Les �brés Ek que l'on utilisera dans la suite sont dé�nis à partir des �brés en
droites Lk : par exemple, on s'intéressera particulièrement au cas de Ek = E 
 L

k,
où E est un �bré vectoriel hermitien �xé muni d'une connexion hermitienne rE.

Les structures et connexions hermitiennes dont on munit Ek naturellement sont
alors induites par celles de E et L. En particulier, la connexion hermitienne induite
par rL sur Lk a pour courbure �ik! ; il s'ensuit que les variations des sections des
�brés Ek que l'on considérera tendent naturellement à se produire à des échelles de

l'ordre de k�1=2 (à cause de l'identité liant leurs dérivées secondes à la courbure).
Il est donc utile de remplacer la métrique g sur X par la métrique renormalisée
gk = k:g : le diamètre de X est alors multiplié par k1=2, et les dérivées d'ordre p des
sections sont divisées par kp=2.

Remarque : contrairement à la convention adoptée ici ainsi qu'au chapitre III
et dans l'ensemble de la littérature, dans le chapitre II ci-dessous ([A1]) la métrique
gk n'est pas utilisée, et toutes les estimées sont données pour la métrique g, ce qui

introduit des facteurs k1=2 supplémentaires dans les dé�nitions. Par ailleurs on peut
indi�éremment travailler avec des estimées de type Cr ([D1], [A1]) ou C1 ([A2]).

Définition 1. Des sections (sk)k�0 de �brés vectoriels complexes Ek sur X
sont dites asymptotiquement holomorphes si, pour tout p 2 N, les dérivées cova-
riantes rp

sk et les quantités k1=2rp �@sk sont uniformément bornées (pour la mé-
trique gk) par des constantes indépendantes de k, c'est-à-dire si

8p 2 N ; jskjCp;gk = O(1) et j�@skjCp;gk = O(k�1=2):

Définition 2. Des sections (sk)k�0 de Ek sur X sont dites uniformément
transverses à 0 s'il existe une constante � > 0 telle que, pour tout k et en tout
point x 2 X tel que jsk(x)j < �, la dérivée covariante rsk(x) : TxX ! (Ek)x est
surjective et �plus grande que �� (c'est-à-dire admet un inverse à droite de norme
inférieure à ��1).

On véri�e aisément que, si des sections (sk)k�0 de Ek sont simultanément asymp-
totiquement holomorphes et uniformément transverses à 0, alors pour k su�sam-
ment grand le lieu d'annulation Wk = s

�1
k (0) est une sous-variété symplectique

lisse de X. Les sous-variétés Wk sont de plus asymptotiquement J-holomorphes, en

ce sens qu'en tout point de Wk le sous-espace J(TWk) est à distance O(k�1=2) de
TWk. Les résultats principaux du chapitre II peuvent alors être formulés de la façon
suivante :

Théorème 1 ([A1]). Soit E un �bré vectoriel complexe quelconque sur X : pour
k su�samment grand, les �brés E 
 L

k admettent des sections asymptotiquement
holomorphes et uniformément transverses à 0, dont les lieux d'annulation sont des
sous-variétés symplectiques lisses de X.
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Ce théorème (chapitre II, Corollaire 1) étend le résultat principal obtenu par
Donaldson dans [D1], qui correspond au cas où E est le �bré en droites trivial. Le
résultat d'unicité suivant (chapitre II, Corollaire 2) est également établi :

Théorème 2 ([A1]). Les sous-variétés symplectiques que l'on peut construire
à partir de sections asymptotiquement holomorphes et uniformément transverses à
0 de E 
 L

k sont, pour toute valeur su�samment grande de k, uniques à isotopie
symplectique près.

En outre, ce résultat d'unicité demeure vrai si l'on considère des sous-variétés
obtenues pour di�érentes structures presque-complexes compatibles avec !. Pour k
su�samment grand, le type topologique des sous-variétés symplectiques construites
est donc un invariant symplectique de (X;!).

Exemple. Dans le tore T 4 = R4
=Z4 muni de la forme symplectique standard

! = 4�(dx1 ^ dx2 + dx
3 ^ dx4), di�érentes topologies sont envisageables pour des

sous-variétés symplectiques représentant la classe d'homologie duale de k
2�
[!] pour

la dualité de Poincaré. La con�guration la plus simple, qui correspond à ce que

l'on obtient naturellement pour k su�samment grand à partir de sections asymp-
totiquement holomorphes et uniformément transverses à 0 de Lk, est une surface
de Riemann connexe de genre 4k2 + 1 : une telle sous-variété peut par exemple
être obtenue par désingularisation (à l'aide de sommes connexes) de la sous-variété
singulière (Fk � T

2) [ (T 2 � Fk) où Fk � T
2 est un ensemble �ni constitué de 2k

points de T 2.
Toutefois, d'autres types de sous-variétés symplectiques permettent de réaliser

la même classe d'homologie : par exemple des surfaces constituées de deux compo-
santes disjointes chacune de genre 2k2+1. Il est aisé de véri�er sans même invoquer

le Théorème 2 que de telles sous-variétés ne peuvent être obtenues par les méthodes
décrites ici (Proposition 2 du chapitre II). La construction de ces sous-variétés non
connexes se fonde sur l'existence d'une décomposition 1

2�
! = � + � où les 2-formes

� et � sont telles que ! ^ � > 0, ! ^ � > 0 et � ^ � = 0 : les classes d'homologie

duales de [k�] et [k�] peuvent alors être représentées par des courbes symplectiques
disjointes, chaque composante étant de genre 2k2 + 1 et obtenue comme ci-dessus
par désingularisation de familles de 2-tores plats de T 4.

Cet exemple illustre la non-trivialité du Théorème 2 : contrairement à ce qui
se passe en géométrie complexe où toutes les hypersurfaces projectives lisses d'une
classe d'homologie donnée sont di�éomorphes, dans le cas symplectique di�érents

types topologiques peuvent coexister dans une même classe d'homologie. Le résul-
tat d'unicité décrit ici ainsi que plusieurs autres propriétés décrites dans [D1] et
[A1] indiquent que, par de nombreux aspects, les sous-variétés approximativement
holomorphes étudiées ici semblent avoir un comportement topologique plus proche

de la géométrie projective complexe que de la géométrie symplectique usuelle.
La détermination du type topologique des sous-variétés construites est en général

di�cile, même si des invariants élémentaires tels que les nombres de Betti peuvent
être calculés explicitement (Proposition 2 et �5.2 du chapitre II). En général, cette
détermination complète n'est possible que dans quelques cas tels que ceux des sous-

variétés de dimension 2 (ce sont des surfaces de Riemann connexes dont le genre



8 I. INTRODUCTION

se calcule aisément), ou parfois lorsque la variété X est une variété algébrique ou
encore un produit de variétés symplectiques.

Exemple. On considère le cas où X
6 = M

4 � �2 est le produit cartésien de
variétés symplectiques (M;!M) de dimension 4 et (�; !�) de dimension 2 véri�ant
toutes deux la condition d'intégralité requise. Par le Théorème 1, on peut construire
pour k su�samment grand des courbes symplectiques �k �M de classe fondamen-
tale k

2�
[!M ] (le genre de ces courbes connexes se calcule par la formule d'adjonction),

ainsi que des parties �nies Fk constituées de fk =
k
2�

R
�
!� points de �.

La variété X étant munie de la structure symplectique produit ! = �
�
1!M +

�
�
2!�, on peut alors établir (à l'aide du Théorème 2 du chapitre II) que les �brés
L
k sur X admettent des sections asymptotiquement holomorphes et uniformément

transverses à 0 dont les lieux d'annulationWk sont arbitrairement proches des sous-

variétés singulières Vk = (�k��)[(M�Fk). La topologie naturelle des sous-variétés
symplectiques de X de classe fondamentale duale de k

2�
[!] décrites par le Théorème

1 correspond donc à une désingularisation (au voisinage de �k � Fk) de la sous-
variété Vk. On peut montrer que la construction qui permet d'obtenir Wk à partir
de �k � � et de M � Fk est une opération de somme connexe symplectique avec
éclatements le long de �k � Fk : si on note Mk la variété obtenue à partir de M
par éclatement de points de �k jusqu'à rendre trivial le �bré normal de �k, la sous-

variété Wk s'obtient en recollant à �k � � un exemplaire de la variété éclatée Mk

le long de chacune des fk composantes de �k � Fk. On se référera à [Go] pour une
description plus précise du procédé de somme connexe symplectique.

La construction de sous-variétés symplectiques de dimension 4 (canoniques à
isotopie près d'après le Théorème 2) est particulièrement intéressante, car les nom-
breux invariants de dimension 4 dé�nis pour ces sous-variétés fournissent autant
d'invariants symplectiques de la variété ambiante. Dans le cas des invariants de

Seiberg-Witten, cette approche est toutefois décevante, car les invariants des sous-
variétés construites pour k grand semblent contenir très peu d'information : dans le
cas des variétés projectives, les sous-variétés obtenues sont des surfaces algébriques
de type général, dont les invariants de Seiberg-Witten sont peu intéressants [FM]
(ils ne décrivent que la classe de Chern c1(TX) et la présence d'éventuelles sphères
exceptionnelles), et dans le cas décrit ci-dessus du produit X6 =M

4��2, le calcul
partiel à l'aide de formules pour les sommes connexes telles que celle de [MST] n'est
pas plus fructueux. Toutefois, il est probable que des invariants plus �ns tels que
ceux qui décrivent la topologie des structures de pinceaux de Lefschetz symplec-

tiques en dimension 4 ([D2], voir aussi [Si] et [BK]), appliqués aux sous-variétés de
dimension 4 données par le Théorème 1, permettent d'obtenir des informations plus
précises sur la topologie de la variété ambiante.

3. Revêtements rami�és de C P
2

Les théorèmes d'existence de sections asymptotiquement holomorphes et unifor-
mément transverses à 0 décrits ci-dessus constituent également un premier pas vers

l'obtention de structures plus élaborées : ainsi, il est possible pour k su�samment
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grand de construire une section approximativement holomorphe de C 2 
 L
k (c'est-

à-dire un couple de sections de Lk) dont les propriétés de transversalité entrainent
l'existence d'une structure de pinceau de Lefschetz symplectique sur X ([D2], voir

également le �6.2 du chapitre III). Dans cette partie nous nous intéresserons plus
particulièrement à la construction de trois sections approximativement holomorphes
de Lk (c'est-à-dire une section de C 3 
 L

k) lorsque X est de dimension 4, ce qui
permet d'aboutir au résultat que toute variété symplectique compacte de dimen-
sion 4 est un revêtement rami�é (singulier) de C P2 [A2]. Les énoncés et dé�nitions

ci-dessous sont formulés plus précisément et démontrés dans le chapitre III.
Il existe un lien naturel entre sections de C 3 
L

k et applications à valeurs dans
C P

2 : la donnée d'une section s = (s0; s1; s2) de C
3 
 L

k qui ne s'annule pas sur X
permet de dé�nir une application f(x) = [s0(x) : s1(x) : s2(x)] (en coordonnées ho-

mogènes) de X dans C P2. Lorsque k est assez grand, il est possible de construire des
sections approximativement holomorphes de C 3 
 L

k qui ne s'annulent pas et dont
les propriétés de généricité et de compatibilité avec la structure presque-complexe
su�sent à assurer que l'application projective correspondante est un revêtement
rami�é singulier approximativement holomorphe (la formulation précise des pro-
priétés requises étant relativement compliquée, on se référera aux Dé�nitions 5, 6
et 7 du chapitre III).

Le terme de revêtement rami�é fait référence au fait que l'on autorise des feuillets
du revêtement à se rejoindre le long d'une sous-variété R appelée lieu de rami�ca-
tion : l'exemple le plus simple est l'application (x; y) 7! (x2; y) de C 2 dans C 2 , dont

le lieu de rami�cation est C � 0. En outre, le revêtement décrit ici est singulier
de par la présence de points isolés où le lieu de rami�cation R devient �vertical�,
c'est-à-dire que la restriction de f à R cesse d'être une immersion et l'image f(R)
présente alors un cusp : un exemple type est l'application (x; y) 7! (x3�xy; y) de C 2

dans C 2 au voisinage de l'origine. Une description plus précise de la notion de revê-
tement rami�é singulier est donnée au �1 du chapitre III. En outre, dans le cas que
l'on considère ici l'application de revêtement est approximativement holomorphe,
ce qui implique en particulier que le lieu de rami�cation R est une sous-variété
symplectique approximativement holomorphe de X et que son image par f est une

sous-variété symplectique singulière de C P2.
Le résultat principal de [A2] peut se formuler de la façon suivante (cf. Théorèmes

1 et 4 du chapitre III) :

Théorème 3. Pour tout k su�samment grand, il est possible de construire des
sections de C 3 
 L

k qui donnent à X une structure de revêtement rami�é singu-
lier approximativement holomorphe au-dessus de C P2. En outre, pour chaque valeur
su�samment grande de k la topologie d'un tel revêtement est canoniquement déter-
minée à isotopie près.

De même que les structures de pinceaux de Lefschetz symplectiques des varié-
tés symplectiques de dimension 4 permettent, par l'étude de la monodromie de la
�bration de Lefschetz correspondante au-dessus de C P1, de dé�nir des invariants
symplectiques très �ns ([D2], [BK]), il est possible d'exploiter le Théorème 3 pour

construire de nouveaux invariants symplectiques.
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La topologie d'un revêtement rami�é f : X ! C P
2 est en grande partie déter-

minée par celle de l'image du lieu de rami�cation D = f(R) � C P
2. Dans notre

cas, D est une courbe symplectique singulière dans C P2, dont les seules singularités
sont génériquement des cusps et des points doubles (a priori, il n'est pas certain
que l'on puisse exclure les points doubles à auto-intersection négative comme c'est
le cas en géométrie projective). L'étude des invariants qui caractérisent la topologie

d'une telle sous-variété de C P2 est actuellement l'objet d'un travail en collaboration
avec L. Katzarkov, en faisant appel à des techniques introduites et développées en
géométrie complexe par Moishezon dans les années 80 ([Moi1], [Moi2], ...) et qui
permettent de se ramener à l'étude d'une factorisation dans un groupe de tresses.
Les perspectives o�ertes par de tels invariants pour la résolution de divers pro-

blèmes ouverts importants en topologie symplectique de la dimension 4 semblent
d'ores et déjà prometteuses, même si un travail important reste à fournir avant que
la topologie des revêtements rami�és singuliers de C P2 soit entièrement comprise.



CHAPITRE II

Asymptotically Holomorphic Families of Symplectic

Submanifolds

(paru dans Geom. Funct. Anal. 7 (1997), 971�995)

Abstract. We construct a wide range of symplectic submanifolds

in a compact symplectic manifold as zero sets of asymptotically

holomorphic sections of vector bundles obtained by tensoring an

arbitrary vector bundle by large powers of the complex line bundle

whose �rst Chern class is the symplectic form (assuming a suit-

able integrality condition). We also show that, asymptotically, all

sequences of submanifolds constructed from a given vector bun-

dle are isotopic. Furthermore, we prove a result analogous to the

Lefschetz hyperplane theorem for the constructed submanifolds.

1. Introduction

In a recent paper [D1], Donaldson has exhibited an elementary construction

of symplectic submanifolds of codimension 2 in a compact symplectic manifold,
where the submanifolds are seen as zero sets of asymptotically holomorphic sections
of well-chosen line bundles. In this paper, we extend this construction to higher
rank bundles as well as to one-parameter families, and obtain as a consequence an

important isotopy result.
In all the following, (X;!) will be a compact symplectic manifold of dimension

2n, such that the cohomology class 1
2�
[!] is integral. A compatible almost-complex

structure J and the corresponding riemannian metric g are �xed. Let L be the

complex line bundle on X whose �rst Chern class is c1(L) =
1
2�
[!]. Fix a Hermitian

structure on L, and let rL be a Hermitian connection on L whose curvature 2-form
is equal to �i! (it is clear that such a connection always exists).

We will consider families of sections of bundles of the form E
Lk on X, de�ned
for all large values of an integer parameter k, where E is any Hermitian vector

bundle over X. The connection rL induces a connection of curvature �ik! on Lk,
and together with any given Hermitian connection rE on E this yields a Hermitian
connection on E 
 L

k for any k. We are interested in sections which satisfy the
following two properties :

Definition 1. A sequence of sections sk of E 
 L
k (for large k) is said to

be asymptotically holomorphic with respect to the given connections and almost-
complex structure if the following bounds hold :

jskj = O(1); jrskj = O(k1=2); j�@skj = O(1);

jrrskj = O(k); jr�@skj = O(k1=2):

11
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Since X is compact, up to a change by a constant factor in the estimates, the
notion of asymptotic holomorphicity does not actually depend on the chosen Her-
mitian structures and on the chosen connectionrE. On the contrary, the connection

rL is essentially determined by the symplectic form !, and the positivity property
of its curvature is the fundamental ingredient that makes the construction possible.

Definition 2. A section s of a vector bundle E
Lk is said to be �-transverse
to 0 if whenever js(x)j < �, the covariant derivative rs(x) : TxX ! (E 
 L

k)x
is surjective and admits a right inverse whose norm is smaller than �

�1
:k
�1=2. A

family of sections is transverse to 0 if there exists an � > 0 such that �-transversality
to 0 holds for all large values of k.

In the case of line bundles, �-transversality to 0 simply means that the covariant
derivative of the section is larger than �k

1=2 wherever the section is smaller than
�. Also note that transversality to 0 is an open property : if s is �-transverse to 0,
then any section � such that js � �j < � and jrs � r�j < k

1=2
� is automatically

(� � �)-transverse to 0. The following holds clearly, independently of the choice of
the connections on the vector bundles :

Proposition 1. Let sk be sections of the vector bundles E 
 L
k which are si-

multaneously asymptotically holomorphic and transverse to 0. Then for all large
enough k, the zero sets Wk of sk are embedded symplectic submanifolds in X. Fur-
thermore, the submanifolds Wk are asymptotically J-holomorphic, i.e. J(TWk) is

within O(k�1=2) of TWk.

The result obtained by Donaldson [D1] can be expressed as follows :

Theorem 1. For all large k there exist sections of the line bundles Lk which
are transverse to 0 and asymptotically holomorphic (with respect to connections with
curvature �ik! on Lk).

Our main result is the following (the extension to almost-complex structures
that depend on the parameter t was suggested by the referee) :

Theorem 2. Let E be a complex vector bundle of rank r over X, and let a
parameter space T be either f0g or [0; 1]. Let (Jt)t2T be a family of almost-complex
structures on X compatible with !. Fix a constant � > 0, and let (st;k)t2T;k�K be

a sequence of families of asymptotically Jt-holomorphic sections of E 
 L
k de�ned

for all large k, such that the sections st;k and their derivatives depend continuously
on t.

Then there exist constants ~K � K and � > 0 (depending only on �, the geometry
of X and the bounds on the derivatives of st;k), and a sequence (�t;k)t2T;k� ~K of

families of asymptotically Jt-holomorphic sections of E 
L
k de�ned for all k � ~K,

such that
(a) the sections �t;k and their derivatives depend continuously on t,

(b) for all t 2 T , j�t;k � st;kj < � and jr�t;k �rst;kj < k
1=2
�,

(c) for all t 2 T , �t;k is �-transverse to 0.

Note that, since we allow the almost-complex structure on X to depend on t,

great care must be taken as to the choice of the metric on X used for the estimates
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on derivatives. The most reasonable choice, and the one which will be made in the
proof, is to always use the same metric, independently of t (so, there is no relation
between g, ! and Jt). However, it is clear from the statement of the theorem that,

since the spaces X and T are compact, any change in the choice of metric can be

absorbed by simply changing the constants ~K and �, and so the result holds in all

generality.
Theorem 2 has many consequences. Among them, we mention the following

extension of Donaldson's result to higher rank bundles :

Corollary 1. For any complex vector bundle E over X and for all large k,
there exist asymptotically holomorphic sections of E
Lk which are transverse to 0,
and thus whose zero sets are embedded symplectic submanifolds in X. Furthermore
given a sequence of asymptotically holomorphic sections of E 
 L

k and a constant
� > 0, we can require that the transverse sections lie within � in C0 sense (and k1=2�
in C1 sense) of the given sections.

Therefore, homology classes that one can realize by this construction include all

classes whose Poincaré dual is of the form ( k
2�
[!])r + c1:(

k
2�
[!])r�1 + : : : + cr, with

c1; : : : ; cr the Chern classes of any complex vector bundle and k any su�ciently
large integer.

An important result that one can obtain on the sequences of submanifolds con-
structed using Corollary 1 is the following isotopy result derived from the case where

T = [0; 1] in Theorem 2 and which had been conjectured by Donaldson in the case
of line bundles :

Corollary 2. Let E be any complex vector bundle over X, and let s0;k and s1;k
be two sequences of sections of E
Lk. Assume that these sections are asymptotically
holomorphic with respect to almost-complex structures J0 and J1 respectively, and
that they are �-transverse to 0. Then for all large k the zero sets of s0;k and s1;k are
isotopic through asymptotically holomorphic symplectic submanifolds. Moreover,
this isotopy can be realized through symplectomorphisms of X.

This result follows from Theorem 2 by de�ning sections st;k and almost-complex

structures Jt that interpolate between (s0;k; J0) and (s1;k; J1) in the following way :

for t 2 [0; 1
3
], let st;k = (1 � 3t)s0;k and Jt = J0 ; for t 2 [1

3
;
2
3
], let st;k = 0 and

take Jt to be a path of compatible almost-complex structures from J0 to J1 (this
is possible since the space of compatible almost-complex structures is connected) ;

and for t 2 [2
3
; 1], let st;k = (3t� 2)s1;k and Jt = J1. One can then apply Theorem

2 and obtain for all large k and for all t 2 [0; 1] sections �t;k that di�er from st;k

by at most �=2 and are �-transverse to 0 for some �. Since transversality to 0 is
an open property, the submanifolds cut out by �0;k and �1;k are clearly isotopic to

those cut out by s0;k and s1;k. Moreover, the family �t;k gives an isotopy between
the zero sets of �0;k and �1;k. So the constructed submanifolds are isotopic. The
proof that this isotopy can be realized through symplectomorphisms of X will be
given in Section 4.

As a �rst step in the characterization of the topology of the constructed sub-
manifolds, we also prove the following statement, extending the result obtained by

Donaldson in the case of the line bundles Lk :
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Proposition 2. Let E be a vector bundle of rank r over X, and let Wk be a
sequence of symplectic submanifolds of X constructed as the zero sets of asymptot-
ically holomorphic sections sk of E 
 L

k which are transverse to 0, for all large k.
Then when k is su�ciently large, the inclusion i : Wk ! X induces an isomorphism
on homotopy groups �p for p < n� r, and a surjection on �n�r. The same property
also holds for homology groups.

Section 2 contains the statement and proof of the local result on which the whole
construction relies. Section 3 deals with the proof of a semi-global statement, using

a globalization process to obtain results on large subsets ofX from the local picture.
The proofs of Theorem 2 and Corollary 2 are then completed in Section 4. Sec-
tion 5 contains miscellaneous results on the topology and geometry of the obtained
submanifolds, including Proposition 2.

Acknowledgments. The author wishes to thank Professor Mikhael Gromov
(IHÉS) for valuable suggestions and guidance throughout the elaboration of this

paper, and Professor Jean-Pierre Bourguignon (École Polytechnique) for his sup-
port.

2. The local result

The proof of Theorem 2 relies on a local transversality result for approximatively
holomorphic functions, which we state and prove immediately.

Proposition 3. There exists an integer p depending only on the dimension n,
with the following property : let Æ be a constant with 0 < Æ <

1
2
, and let � =

Æ: log(Æ�1)�p. Let (ft)t2T be a family of complex-valued functions over the ball B+

of radius 11
10

in C n , depending continuously on the parameter t 2 T and satisfying

for all t the following bounds over B+ :

jftj � 1; j�@ftj � �; jr�@ftj � �:

Then there exists a family of complex numbers wt 2 C , depending continuously
on t, such that for all t 2 T , jwtj � Æ, and ft �wt has a �rst derivative larger than
� at any point of the interior ball B of radius 1 where its norm is smaller than �.

Proposition 3 extends a similar result proved in detail in [D1], which corresponds
to the case where T = f0g. The proof of Proposition 3 is based on the same ideas

as Donaldson's proof, which is in turn based on considerations from real algebraic
geometry following the method of Yomdin [Y][Gro2], with the only di�erence that
we must get everything to depend continuously on t. Note that this statement is
false for more general parameter spaces T than f0g and [0; 1], since for example
when T is the unit disc in C and ft(z) = t, one looks for a continuous map t 7! wt

of the disc to itself without a �xed point, in contradiction with Brouwer's theorem.
The idea is to deal with polynomial functions gt approximating ft, for which

a general result on the complexity of real semi-algebraic sets gives constraints on
the near-critical levels. This part of the proof is similar to that given in [D1], so

we skip the details. To obtain polynomial functions, we approximate ft �rst by a

continuous family of holomorphic functions ~ft di�ering from ft by at most a �xed
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multiple of � in C
1 sense, using that �@ft is small. The polynomials gt are then

obtained by truncating the Taylor series expansion of ~ft to a given degree. It can
be shown that by this method one can obtain polynomial functions gt of degree d
less than a constant times log(��1), such that gt di�ers from ft by at most c:� in

C
1 sense, where c is a �xed constant (see [D1]). This approximation process does

not hold on the whole ball where ft is de�ned, which is why we needed ft to be
de�ned on B+ to get a result over the slightly smaller ball B (see Lemmas 27 and
28 of [D1]).

For a given complex-valued function h over B, call Yh;� the set of all points
in B where the derivative of h has norm less than �, and call Zh;� the �-tubular
neighborhood of h(Yh;�). What we wish to construct is a path wt avoiding by at least
� all near-critical levels of ft, i.e. consisting of values that lie outside of Zft;�. Since
gt is within c:� of ft, it is clear that Zft;� is contained in Zt = Zgt;(c+1)�. However

a general result on the complexity of real semi-algebraic sets yields constraints on
the set Ygt;(c+1)�. The precise statement which one applies to the real polynomial

jdgtj
2 is the following (Proposition 25 of [D1]) :

Lemma 1. Let F : Rm ! R be a polynomial function of degree d, and let
S(�) � Rm be the subset S(�) = fx 2 Rm : jxj � 1; F (x) � 1 + �g. Then for
arbitrarily small � > 0 there exist �xed constants C and � depending only on the
dimension m such that S(0) may be decomposed into pieces S(0) = S1[S2 � � �[SA,
where A � Cd

�, in such a way that any pair of points in the same piece Sr can be
joined by a path in S(�) of length less than Cd�.

So, as described in [D1], given any �xed t, the set Ygt;(c+1)� of near-critical
points of the polynomial function gt of degree d can be subdivided into at most
P (d) subsets, where P is a �xed polynomial, in such a way that two points lying in

the same subset can be joined by a path of length at most P (d) inside Ygt;2(c+1)�.
It follows that the image by gt of Ygt;(c+1)� is contained in the union of P (d) discs
of radius at most 2(c+1)�P (d), so that the set Zt of values which we wish to avoid
is contained in the union Z+

t of P (d) discs of radius �Q(d), where Q = 3(c+1)P is

a �xed polynomial and d = O(log��1).
If one assumes Æ to be larger than �Q(d)P (d)1=2, it follows immediately from

this constraint on Zt that Zt cannot �ll the disc D of all complex numbers of norm
at most Æ : this immediately proves the case T = f0g. However, when T = [0; 1],
we also need wt to depend continuously on t. For this purpose, we show that if Æ

is large enough, D�Z
+
t , when decomposed into connected components, splits into

several small components and only one large component.
Indeed, given a component C of D � Z

+
t , the simplest situation is that it does

not meet the boundary ofD. Then its boundary is a curve consisting of pieces of the

boundaries of the balls making up Z+
t , so its length is at most 2�P (d)Q(d)�, and

it follows that C has diameter less than �P (d)Q(d)�. Considering two components
C1 and C2 which meet the boundary of D at points z1 and z2, we can consider an
arc 
 joining the boundary of D to itself that separates C1 from C2 and is contained
in the boundary of Z+

t . Assuming that Æ is larger than e.g. 100P (d)Q(d)�, since
the length of 
 is at most 2�P (d)Q(d)�, it must stay close to either z1 or z2 in
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order to separate them : 
 must remain within a distance of at most 10P (d)Q(d)�
from one of them. It follows that there exists i 2 f1; 2g such that Ci is contained in
the ball of radius 10P (d)Q(d)� centered at zi. So all components of D�Z+

t except

at most one are contained in balls of radius R(d)�, for some �xed polynomial R.
Furthermore, the number of components of D � Z

+
t is bounded by a value directly

related to the number of balls making up Z+
t , so that, increasing R if necessary, the

number of components of D � Z
+
t is also bounded by R(d).

Assuming that Æ is much larger than R(d)3=2�, the area �Æ2 of D is much larger

than �R(d)3�2, so that the small components of D � Z
+
t cannot �ll it, and there

must be a single large component. Getting back to D � Zt, which was the set in
which we had to choose wt, it contains D�Z

+
t and di�ers from it by at most Q(d)�,

so that, letting U(t) be the component of D � Zt containing the large component

of D � Z
+
t , it is the only large component of D � Zt. The component U(t) is

characterized by the property that it is the only component of diameter more than
2R(d)� in D � Zt.

So the existence of a single large component U(t) in D� Zt is proved upon the
assumption that Æ is large enough, namely larger than �:�(d) where � is a given

�xed polynomial that can be expressed in terms of P , Q and R (so � depends only
on the dimension n). Since d is bounded by a constant times log��1, it is not
hard to see that there exists an integer p such that, for all 0 < Æ <

1
2
, the relation

� = Æ: log(Æ�1)�p implies that Æ > �:�(d). This is the value of p which we choose in
the statement of the proposition, thus ensuring that the above statements always
hold.

Since
S
tftg � Zt is a closed subset of T �D, the open set U(t) depends semi-

continuously on t : let U�(t; �) be the set of all points of U(t) at distance more than
� from Zt [ @D. We claim that, given any t and any small � > 0, for all � close
enough to t, U(�) contains U�(t; �). To see this, we �rst show for all � close to t,
U
�(t; �) \ Z� = ;. Assuming that this is not the case, one can get a sequence of

points of Z� for � ! t that belong to U�(t; �). From this sequence one can extract
a convergent subsequence, whose limit belongs to �U�(t; �) and thus lies outside of
Zt, in contradiction with the fact that

S
tftg � Zt is closed. So U

�(t; �) � D � Z�

for all � close enough to t. Making � smaller if necessary, one may assume that

U
�(t; �) is connected, so that for � close to t, U�(t; �) is necessarily contained in

the large component of D � Z� , namely U(�).
It follows that U =

S
tftg � U(t) is an open connected subset of T �D, and is

thus path-connected. So we get a path s 7! (t(s); w(s)) joining (0; w(0)) to (1; w(1))
inside U , for any given w(0) and w(1) in U(0) and U(1). We then only have to

make sure that s 7! t(s) is strictly increasing in order to de�ne wt(s) = w(s).
Getting the t component to increase strictly is in fact quite easy. Indeed, we

�rst get it to be weakly increasing, by considering values s1 < s2 of the parameter
such that t(s1) = t(s2) = t and simply replacing the portion of the path between s1
and s2 by a path joining w(s1) to w(s2) in the connected set U(t). Then, we slightly
shift the path, using the fact that U is open, to get the t component to increase
slightly over the parts where it was constant. Thus we can de�ne wt(s) = w(s) and
end the proof of Proposition 3.
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3. The globalization process

3.1. Statement of the result. We will now prove a semi-global result using
Proposition 3. The globalization process we describe here is based on that used by

Donaldson in [D1], but a signi�cantly higher amount of work is required because
we have to deal with bundles of rank larger than one. The important fact we use
is that transversality to 0 is, as expected, a local and open property.

Theorem 3. Let U be any open subset of X, and let E be a complex vector
bundle of rank r � 0 over U . Let (Jt)t2T be a family of almost-complex structures
on X compatible with !. Fix a constant � > 0. Let Wt;k be a family of symplectic
submanifolds in U , obtained as the zero sets of asymptotically Jt-holomorphic sec-
tions wt;k of the vector bundles E
Lk which are �-transverse to 0 over U for some
� > 0 and depend continuously on t 2 T (if the rank is r = 0, then we simply de�ne
Wt;k = U). Finally, let (�t;k) be a family of asymptotically Jt-holomorphic sections
of Lk which depend continuously on t. De�ne U=

k to be the set of all points of U at

distance more than 4k�1=3 from the boundary of U .
Then for some ~� > 0 and for all large k, there exist asymptotically Jt-holomor-

phic sections ~�t;k of Lk over U , depending continuously on t, and such that
(a) for all t 2 T , ~�t;k is equal to �t;k near the boundary of U ,

(b) j~�t;k � �t;kj < � and jr~�t;k �r�t;kj < k
1=2

� for all t,

(c) the sections (wt;k + ~�t;k) of (E � C ) 
 L
k are ~�-transverse to 0 over U=

k for
all t.

Basically, this result states that the construction of Theorem 2 can be carried
out, in the line bundle case, in such a way that the resulting sections are transverse

to a given family of symplectic submanifolds.
As remarked in the introduction, the choice of the metric in the statement of the

theorem is not obvious. We choose to use always the same metric g on X, rather
than trying to work directly with the metrics gt induced by ! and Jt.

3.2. Local coordinates and sections. The proof of Theorem 3 is based on
the existence of highly localized asymptotically holomorphic sections of Lk near

every point x 2 X. First, we notice that near any point x 2 X, we can de�ne
local complex Darboux coordinates (zi), that is to say a symplectomorphism from
a neighborhood of x in (X;!) to a neighborhood of 0 in C n with the standard
symplectic form. Furthermore it is well-known that, by composing the coordinate

map with a (R-linear) symplectic transformation of C n , one can ensure that its
di�erential at x induces a complex linearmap from (TxX; Jt) to C

n with its standard
complex structure.

Since the almost-complex structure Jt is not integrable, the coordinate map

cannot be made pseudo-holomorphic on a whole neighborhood of x. However, since
the manifold X and the parameter space T are compact, the Nijenhuis tensor,
which is the obstruction to the integrability of the complex structure Jt on X,
is bounded by a �xed constant, and so are its derivatives. It follows that for a
suitable choice of the Darboux coordinates, the coordinate map can be made nearly

pseudo-holomorphic around x, in the sense that the antiholomorphic part of its
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di�erential vanishes at x and grows no faster than a constant times the distance
to x. Furthermore, it is easy to check that the coordinate map can be chosen to
depend continuously on the parameter t. So, we have the following lemma :

Lemma 2. Near any point x 2 X, there exist for all t 2 T complex Darboux co-
ordinates depending continuously on t, such that the inverse  t : (C

n
; 0)! (X; x) of

the coordinate map is nearly pseudo-holomorphic with respect to the almost-complex
structure Jt on X and the canonical complex structure on C n . Namely, the map
 t, which trivially satis�es jr tj = O(1) and jrr tj = O(1) on a ball of �xed
radius around 0, fails to be pseudo-holomorphic by an amount that vanishes at 0
and thus grows no faster than the distance to the origin, i.e. j�@ t(z)j = O(jzj), and
jr�@ tj = O(1).

Fix a certain value of the parameter t 2 T , and consider the Hermitian con-
nections with curvature �ik! that we have put on L

k in the introduction. Near
any point x 2 X, using the local complex Darboux coordinates (zi) we have just

constructed, a suitable choice of a local trivialization of Lk leads to the following
connection 1-form :

Ak =
k

4

nX
j=1

(zjdzj � zjdzj)

(it can be readily checked that dAk = �ik!).
On the standard C n with connection Ak, the function s(z) = exp(�kjzj2=4)

satis�es the equation �@Ak
s = 0 and the bound jrAk

sj = O(k1=2). Multiplying this

section by a cut-o� function at distance k�1=3 from the origin whose derivative is

small enough, we get a section ~s with small compact support. Since the coordinate
map near x has small antiholomorphic part where ~s is large, the local sections
~s Æ  �1

t of Lk de�ned near x by pullback of ~s through the coordinate map can be
easily checked to be asymptotically holomorphic with respect to Jt and Ak. Thus,

for all large k and for any point x 2 X, extending ~s Æ  �1
t by 0 away from x, we

obtain asymptotically holomorphic sections st;k;x of L
k.

Since T is compact, the metrics gt induced on X by ! and Jt di�er from the
chosen reference metric g by a bounded factor. Therefore, it is clear from the way

we constructed the sections st;k;x that the following statement holds :

Lemma 3. There exist constants � > 0 and cs > 0 such that, given any x 2
X, for all t 2 T and large k, there exist sections st;k;x of Lk over X with the
following properties : the sections st;k;x are asymptotically Jt-holomorphic ; they
depend continuously on t ; the bound jst;k;xj � cs holds over the ball of radius

10 k�1=2 around x ; and �nally, jst;k;xj � exp(��k distg(x; :)
2) everywhere on X.

3.3. General setup and strategy of proof. In a �rst step, we wish to obtain

sections ~�t;k of L
k over U satisfying all the requirements of Theorem 3, except that

we replace (c) by the weaker condition that the restriction of ~�t;k to Wt;k must be

�̂-transverse to 0 over Wt;k \ U
�
k for some �̂ > 0, where U�k is the set of all points

of U at distance more than 2k�1=3 from the boundary of U . It will be shown later

that the transversality to 0 of the restriction to Wt;k \U
�
k of ~�t;k, together with the
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bounds on the second derivatives, implies the transversality to 0 of (wt;k+~�t;k) over
U

=
k .
To start with, we notice that there exists a constant c > 0 such thatWt;k is trivial

at small scale, namely in the ball of radius 10 c k�1=2 around any point. Indeed, if

r = 0 we just take c = 1, and otherwise we use the fact that wt;k is �-transverse to

0, which implies that at any x 2 Wt;k, jrwt;k(x)j > � k
1=2. Since jrrwt;kj < C2 k

for some constant C2, de�ning c =
1

100
� C

�1
2 , the derivative rwt;k varies by a factor

of at most 1
10

in the ball B of radius 10 c k�1=2 around x. It follows that B \Wt;k

is di�eomorphic to a ball.
In all the following, we work with a given �xed value of k, while keeping in mind

that all constants appearing in the estimates have to be independent of k.

For �xed k, we consider a �nite set of points xi of U
�
k � U such that the balls of

radius c k�1=2 centered around xi cover U
�
k . A suitable choice of the points ensures

that their number is O(kn). For �xed D > 0, this set can be subdivided into N
subsets Sj such that the distance between two points in the same subset is at least

Dk
�1=2. Furthermore, N = O(D2n) can be chosen independent of k. The precise

value of D (and consequently of N) will be determined later in the proof.

The idea is to start with the sections �t;k of Lk and proceed in steps. Let Nj

be the union of all balls of radius c k�1=2 around the points of Si for all i < j.
During the j-th step, we start from asymptotically Jt-holomorphic sections �t;k;j
which satisfy conditions (a) and (b), and such that the restriction of �t;k;j to Wt;k

is �j-transverse to 0 over Wt;k \Nj, for some constant �j independent of k. For the

�rst step, this requirement is void, but we choose �0 =
�
2
in order to obtain a total

perturbation smaller than � at the end of the process. We wish to construct �t;k;j+1

from �t;k;j by subtracting small multiples ct;k;x st;k;x of the sections st;k;x for x 2 Sj,
in such a way that the restrictions of the resulting sections are �j+1-transverse to

0, for some small �j+1, over the intersection of Wt;k with all balls of radius c k�1=2

around points in Sj. Furthermore, if the coe�cients of the linear combination are
chosen much smaller than �j, transversality to 0 still holds over Wt;k \ Nj. Also,
since the coe�cients ct;k;x are bounded, the resulting sections, which are sums of
asymptotically holomorphic sections, remain asymptotically holomorphic. So we

need to �nd, for all x 2 Sj, small coe�cients ct;k;x so that �t;k;j � ct;k;x st;k;x has the
desired properties near x.

3.4. Obtaining transversality near a point of Sj. In what follows, x is a

given point in Sj, and Bx is the ball of radius c k
�1=2 around x. Let 
 be the closure

of the open subset of T containing all t such that Bx \Wt;k is not empty (when
r = 0, one gets 
 = T ). When 
 is empty, it is su�cient to de�ne ct;k;x = 0 for all
t. Otherwise, 
 = f0g when T = f0g, and when T = [0; 1] clearly 
 is a union of
disjoint closed intervals. In any case, we choose a component I of 
, i.e. either a

closed interval or a point.
We can then de�ne for all t 2 I a point xt belonging to Bx\Wt;k, in such a way

that xt depends continuously on t, since Wt;k depends continuously on t and always

intersects Bx in a nice way (when r = 0 one can simply choose xt = x). Let B̂t

be the ball in Wt;k of radius 3 c k�1=2 (for the metric induced by g) centered at xt.
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Because of the bounds on the second derivatives of wt;k, we know that B̂t contains
Bx\Wt;k for all t 2 I. We now want to de�ne a nearly holomorphic di�eomorphism

from a neighborhood of 0 in C n�r to B̂t.

Let B̂ be the ball of radius 4ck�1=2 around 0 in C n�r , and let B̂� be the smaller
ball of radius 3ck�1=2 around 0. We claim the following :

Lemma 4. For all t 2 I, there exist di�eomorphisms �t from B̂ to a neigh-
borhood of xt in Wt;k, depending continuously on t, such that �t(0) = xt and

�t(B̂
�) � B̂t, and satisfying the following estimates over B̂ :

j�@�tj = O(k�1=2); jr�tj = O(1); jr�@�tj = O(1); jrr�tj = O(k1=2):

Proof. Recall that, by Lemma 2, there exist local complex Darboux coordi-
nates on X near x depending continuously on t with the property that the inverse
map  t : (C

n
; 0) ! (X; x) satis�es the following bounds at all points at distance

O(k�1=2) from x :

j�@ tj = O(k�1=2); jr tj = O(1); jr�@ tj = O(1); jrr tj = O(1):

Let Tt be the kernel of the complex linear map @wt;k(xt) in TxtX : it is within

O(k�1=2) of the tangent space to Wt;k at xt, but Tt is preserved by Jt. Composing

 t with a translation and a rotation in C n , one gets maps ~ t satisfying the same

requirements as  t, but with ~ t(0) = xt and such that the di�erential of ~ t at 0
maps the span of the n� r �rst coordinates to Tt.

Furthermore, X and T are compact, so the metrics gt induced by ! and Jt di�er
from the reference metric g by at most a �xed constant. It follows that, composing
~ t with a �xed dilation of C n if necessary, one may also require that the image by
~ t of the ball of radius 3ck

�1=2 around 0 contains the ball of radius 4ck�1=2 around

x for the reference metric g. The only price to pay is that ~ t is no longer a local

symplectomorphism ; all other properties still hold.
Since by de�nition of c the submanifolds Wt;k are trivial over the considered

balls, it follows from the implicit function theorem that Wt;k can be parametrized

around xt in the chosen coordinates as the set of points of the form ~ t(z; �t(z)) for
z 2 C n�r , where �t : C

n�r ! C r satis�es �t(0) = 0 and r�t(0) = O(k�1=2). The
derivatives of �t can be easily computed, since it is characterized by the equation

wt;k( ~ t(z; �t(z))) = 0:

Notice that it follows from the transversality to 0 of wt;k that jrwt;k Æ d ~ t(v))j is
larger than a constant times k1=2jvj for all v 2 0 � C r . Combining this estimate
with the bounds on the derivatives of wt;k given by asymptotic holomorphicity and

the above bounds on those of ~ t, one gets the following estimates for �t over the

ball B̂ :

j�@�tj = O(k�1=2); jr�tj = O(1); jr�@�tj = O(1); jrr�tj = O(k1=2):

It is then clear that �t(z) = ~ t(z; �t(z)) satis�es all the required properties.

Now that a local identi�cation between Wt;k and C n�r is available, we de�ne

the restricted sections ŝt;k;x(z) = st;k;x(�t(z)) and �̂t;k;j(z) = �t;k;j(�t(z)). Since
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st;k;x and �t;k;j are both asymptotically holomorphic, the estimates on �t imply

that ŝt;k;x and �̂t;k;j, as sections of the pull-back of Lk over the ball B̂, are also

asymptotically holomorphic. Furthermore, they clearly depend continuously on

t 2 I, and ŝt;k;x remains larger than a �xed constant cs > 0 over B̂. We can then

de�ne the complex-valued functions ft;k;x = �̂t;k;j=ŝt;k;x over B̂, which are clearly
asymptotically holomorphic too.

After dilation of B̂ by a factor of 3ck1=2, all hypotheses of Proposition 3 are

satis�ed with Æ as small as desired, provided that k is large enough. Indeed, the
asymptotic holomorphicity of ft;k;x implies that, for large k, the antiholomorphic
part of the function over the dilated ball is smaller than � = Æ(log Æ�1)�p. So
the local result implies that there exist complex numbers ct;k;x of norm less than Æ

and depending continuously on t 2 I, such that the functions ft;k;x � ct;k;x are �-

transverse to 0 over the ball B̂� of radius 3ck�1=2 around 0 in C n�r . We now notice
that the sections ĝt;k;x = �̂t;k;j � ct;k;x ŝt;k;x, which clearly depend continuously on

t and are asymptotically holomorphic, are �0-transverse to 0 over B̂�, for some �0

di�ering from � by at most a constant factor. Indeed,

rĝt;k;x = r(ŝt;k;x(ft;k;x � ct;k;x)) = ŝt;k;xrft;k;x � (ft;k;x � ct;k;x)rŝt;k;x:

Wherever ĝt;k;x is very small, so is ft;k;x � ct;k;x, and rft;k;x is thus large. Since
ŝt;k;x remains larger than some cs > 0 and rŝt;k;x is bounded by a constant times

k
1=2, it follows that rĝt;k;x is large wherever ĝt;k;x is very small. Putting the right

constants in the right places, one easily checks that ĝt;k;x is �0-transverse to 0 with
�=�

0 bounded by a �xed constant.
We now notice that the restrictions to Wt;k of the sections gt;k;x = �t;k;j �

ct;k;x st;k;x of L
k over U , which clearly are asymptotically Jt-holomorphic and depend

continuously and t, are also �00-transverse to 0 over B̂t for some �00 di�ering from

�
0 by at most a constant factor. Indeed, B̂t is contained in the set of all points of

the form �t(z) for z 2 B̂
�, and

gt;k;x(�t(z)) = �̂t;k;j(z)� ct;k;x ŝt;k;x(z) = ĝt;k;x(z);

so wherever gt;k;x is smaller than �
0, the derivative of ĝt;k;x is larger than �

0
:k

1=2,
and since r�t is bounded by a �xed constant, rgt;k;x is large too.

Next we extend the de�nition of ct;k;x to all t 2 T , in the case of T = [0; 1], since
we have de�ned it only over the components of 
. However, when t 62 
, Wt;k does
not meet the ball Bx, so that there is no transversality requirement. Thus the only
constraints are that ct;k;x must depend continuously on t and remain smaller than
Æ for all t. These conditions are easy to satisfy, so we have proved the following :

Lemma 5. For all large k there exist complex numbers ct;k;x smaller than Æ and
depending continuously on t 2 T such that the restriction toWt;k of �t;k;j�ct;k;x st;k;x
is �00-transverse to 0 over Wt;k \ Bx. Furthermore, for some constant p0 depending

only on the dimension, �00 is at least Æ(log Æ�1)�p
0

.



22 II. A.H. FAMILIES OF SYMPLECTIC SUBMANIFOLDS

3.5. Constructing �t;k;j+1 from �t;k;j. We can now de�ne the sections �t;k;j+1

of Lk over U by

�t;k;j+1 = �t;k;j �
X
x2Sj

ct;k;x st;k;x:

Clearly the sections �t;k;j+1 are asymptotically holomorphic and depend continu-

ously on t 2 T . Furthermore, any two points in Sj are distant of at least Dk
�1=2

with D > 0, so the total size of the perturbation is bounded by a �xed multiple of Æ.
So, choosing Æ smaller than �j over a constant factor (recall that �j is the transver-

sality estimate of the previous step of the iterative process), we can ensure that

j�t;k;j+1��t;k;jj <
�j
2
and jr�t;k;j+1�r�t;k;jj <

�j
2
k
1=2. As a direct consequence, the

restriction to Wt;k of �t;k;j+1 is
�j
2
-transverse to 0 wherever the restriction of �t;k;j is

�j-transverse to 0, including over Wt;k \Nj (recall that Nj =
S
i<j

S
x2Si

Bx).

Letting �j+1 = 1
2
�
00, it is known that for all x 2 Sj the restriction to Wt;k of

�t;k;j�ct;k;x st;k;x is 2�j+1-transverse to 0 over Bx\Wt;k. So, in order to prove that the
restriction toWt;k of �t;k;j+1 is �j+1-transverse to 0 overWt;k\Nj+1, it is su�cient to
check that given x 2 Sj, over Bx, the sum of the perturbations corresponding to all
points y 2 Sj distinct from x is smaller than �j+1, and the sum of their derivatives

is smaller than �j+1k
1=2. In other words, since several contributions were added at

the same time (one at each point of Sj), we have to make sure that they cannot
interfere.

This is where the parameter D (minimum distance between two points in Sj)
is important : indeed, over Bx, by Lemma 3, each of the contributions of the other

points in Sj is at most of the order of Æ exp(��D2), and the sum of these terms is

O(�j exp(��D
2)). Similarly, the derivative of that sum is O(�j exp(��D

2) k1=2). So
the requirement that the sum of the contributions of all points of Sj distinct from
x be smaller than �j+1 corresponds to an inequality of the form K0 exp(��D

2) <
�j+1=�j, where K0 is a �xed constant depending only on the geometry of X. Recall-

ing that �j+1 is no smaller than �j log(�
�1
j )�P for some �xed integer P , the required

inequality is

exp(�D2) > K0 log(�
�1
j )P :

This inequality, which does not depend on k, must be satis�ed by every �j, for each
of the N steps of the process.

To check that the condition on D can be enforced at all steps, we must recall
that the number of steps in the process is N = O(D2n), and study the sequence
(�j) given by a �xed �0 > 0 and the inductive de�nition described above. It can
be shown (see Lemma 24 of [D1]) that the sequence (�j) satis�es for all j a bound

of the type log(��1
j ) = O(j log(j)). It follows that log(��1

N )P = O(D2nP log(D2n)P ),
which is clearly subexponential : a choice of su�ciently large D thus ensures that
the required inequality holds at all steps. So the inductive process described above
is valid, and leads to sections ~�t;k = �t;k;N which are asymptotically Jt-holomorphic,

depend continuously on t, and whose restrictions to Wt;k are �̂-transverse to 0 over

U
�
k for �̂ = �N . Furthermore, ~�t;k is equal to �t;k near the boundary of U because

we only added a linear combination of sections st;k;x for x 2 U
�
k , and st;k;x vanishes

by construction outside of the ball of radius k�1=3 around x. Moreover, ~�t;k di�ers
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from �t;k by at most
P

j �j, which is less than 2�0 = �. So to complete the proof of

Theorem 3 we only have to show that the transversality result on ~�t;kjWt;k
implies

the transversality to 0 of (wt;k + ~�t;k) over U
=
k .

3.6. Transversality to 0 over U=
k . At a point x 2 Wt;k \ U

�
k where j~�t;kj <

�̂, we know that rwt;k is surjective and vanishes in all directions tangential to

Wt;k, while r~�t;k has a tangential component larger than �̂ k
1=2. It follows that

r(wt;k + ~�t;k) is surjective. We now construct a right inverse R : (Ex � C ) 
 L
k
x !

TxX whose norm is O(k�1=2).
Considering a unit length element u of Lkx, there exists a vector û 2 TxWt;k of

norm at most (�̂ k1=2)�1 such that r~�t;k(û) = u. Clearly rwt;k(û) = 0 because

û 2 TxWt;k, so we de�ne R(u) = û. Now consider an orthonormal frame (vi)
in Ex 
 L

k
x. It follows from the �-transversality to 0 of wt;k that rxwt;k has a

right inverse of norm smaller than (� k1=2)�1, so we obtain vectors v̂i in TxX such

that rwt;k(v̂i) = vi and jv̂ij < (� k1=2)�1. There exist coe�cients �i such that

r~�t;k(v̂i) = �i u, with j�ij < C k
1=2 jv̂ij < C �

�1, for some constant C such that

jr~�t;kj < C k
1=2 everywhere. So we de�ne R(vi) = v̂i � �iû, which completes the

determination of R.
The norm of R is, by construction, smaller than K:k�1=2 for some K depending

only on the constants above (C, � and �̂). We thus know that r(wt;k + ~�t;k)

has a right inverse smaller than K k
�1=2 at any point of Wt;k \ U

�
k where j~�t;kj <

�̂. Furthermore we know, from the de�nition of asymptotic holomorphicity, that
jrr(wt;k + ~�t;k)j < K

0
k for some constant K 0.

Consider a point x of U=
k where jwt;kj and j~�t;kj are both smaller than some �

which is simultaneously smaller than �̂

2
, ��̂

2C
and �

2KK0
. From the �-transversality to

0 of wt;k, we know that rwt;k is surjective at x and has a right inverse smaller than

(� k1=2)�1. Since the connectionr is unitary, applying the right inverse to wt;k itself,

we can follow the downward gradient �ow of jwt;kj, and we are certain to reach a

point y of Wt;k at a distance d from the starting point x no larger than � (� k1=2)�1,

which is simultaneously smaller than 1
2KK0

k
�1=2 and �̂

2C
k
�1=2. Furthermore if k is

large enough, d < 2k�1=3 so that y 2 U�k .
Since jr~�t;kj < C:k

1=2 everywhere, j~�t;k(y)j � j~�t;k(x)j < C k
1=2

d <
�̂

2
, so that

j~�t;k(y)j < �̂, and the previous results apply at y. Also, since the second derivatives
are bounded by K 0

k everywhere, rx(wt;k + ~�t;k) di�ers from ry(wt;k + ~�t;k) by at

most K 0
k d, which is smaller than 1

2K
k
1=2, so that it is still surjective and admits a

right inverse of norm O(k�1=2). From this we infer immediately that (wt;k + ~�t;k) is
transverse to 0 over all of U=

k , and the proof of Theorem 3 is complete.

4. The main result

4.1. Proof of Theorem 2. Theorem 2 follows from Theorem 3 by a sim-
ple induction argument. Indeed, to obtain asymptotically holomorphic sections of
E 
 L

k which are transverse to 0 over X for any vector bundle E, we start from
the fact that E is locally trivial, so that there exists a �nite covering of X by N

open subsets Uj such that E is a trivial bundle on a small neighborhood of each Uj.
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We start initially from the sections st;k;0 = st;k of E 
 L
k, and proceed iteratively,

assuming at the beginning of the j-th step that we have constructed, for all large
k, asymptotically holomorphic sections st;k;j of E 
L

k which are �j-transverse to 0

on
S
i<j Ui for some �j > 0 and di�er from st;k by at most j�=N .

Over a small neighborhood of Uj, we trivialize E ' C
r and decompose the sec-

tions st;k;j into their r components for this trivialization. Recall that, in order to

de�ne the connections on E
Lk for which asymptotic holomorphicity and transver-

sality to 0 are expected, we have used a Hermitian connection rE on E. Because X
is compact the connection 1-form of rE in the chosen trivializations can be safely
assumed to be bounded by a �xed constant. It follows that, up to a change in the
constants, asymptotic holomorphicity and transversality to 0 over Uj with respect

to the connections on E 
 L
k induced by rE and rL are equivalent to asymptotic

holomorphicity and transversality to 0 with respect to the connections induced by
rL and the trivial connection on E in the chosen trivialization. So we actually do
not have to worry about rE.

Now, let � be a constant smaller than both �=rN and �j=2r. First, using
Theorem 3, we perturb the �rst component of st;k;j over a neighborhood of Uj by
at most � to make it transverse to 0 over a slightly smaller neighborhood. Next,
using again Theorem 3, we perturb the second component by at most � so that the

sum of the two �rst components is transverse to 0, and so on, perturbing the i-th
component by at most � to make the sum of the i �rst components transverse to
0. The result of this process is a family of asymptotically Jt-holomorphic sections
st;k;j+1 of E 
 L

k which are transverse to 0 over Uj. Furthermore, since the total

perturbation is smaller than r� � �j=2, transversality to 0 still holds over Ui for
i < j, so that the hypotheses of the next step are satis�ed. The construction thus
leads to sections �t;k = st;k;N which are transverse to 0 over all of X. Since at each
of the N steps the total perturbation is less than �=N , the sections �t;k di�er from
st;k by less than �, and Theorem 2 is proved.

4.2. Symplectic isotopies. We now give the remaining part of the proof of

Corollary 2, namely the following statement :

Proposition 4. Let (Wt)t2[0;1] be a family of symplectic submanifolds in X.
Then there exist symplectomorphisms �t : X ! X depending continuously on t,
such that �0 = Id and �t(W0) =Wt.

The following strategy of proof, based on Moser's ideas, was suggested to me

by M. Gromov. The reader unfamiliar with these techniques may use [McS1] (pp.
91-101) as a reference.

It follows immediately fromMoser's stability theorem that there exists a continu-
ous family of symplectomorphisms �t : (W0; !jW0

)! (Wt; !jWt
). Since the symplec-

tic normal bundles to Wt are all isomorphic, Weinstein's symplectic neighborhood
theorem allows one to extend these maps to symplectomorphisms  t : U0 ! Ut such
that  t(W0) =Wt, where Ut is a small tubular neighborhood of Wt for all t.

Let �t be any family of di�eomorphisms of X extending  t. Let !t = �
�
t!

and 
t = �d!t=dt. We want to �nd vector �elds �t on X such that the 1-forms

�t = ��t!t satisfy d�t = 
t and such that �t is tangent to W0 at any point of W0.
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If this is possible, then de�ne di�eomorphisms 	t as the �ow of the vector �elds �t,
and notice that

d

dt
(	�

t�
�
t!) = 	�

t

�
d

dt
(��t!) + L�t(�

�
t!)

�
= 	�

t (�
t + d��t!t) = 0:

So the di�eomorphisms �tÆ	t are actually symplectomorphisms of X. Furthermore
	t preserves W0 by construction, so �t Æ	t maps W0 to Wt, thus giving the desired
result.

So we are left with the problem of �nding �t, or equivalently �t, such that d�t =

t and �tjW0

is tangent to W0. Note that, since �t extends the symplectomorphisms
 t, one has !t = ! and 
t = 0 over U0. It follows that the condition on �tjW0

is
equivalent to the requirement that at any point x 2 W0, the !-symplectic orthogonal

NxW0 to TxW0 lies in the kernel of the 1-form �t.
Since the closed 2-forms !t are all cohomologous, one has [
t] = 0 in H2(X;R),

so there exist 1-forms �t on X such that d�t = 
t. Remark that, although 
t = 0
over U0, one cannot ensure that �tjU0

= 0 unless the class [
t] also vanishes in the

relative cohomology group H2(X;U0;R). So we need to work a little more to �nd
the proper 1-forms �t.

Over U0 one has d�t = 
t = 0, so �t de�nes a class in H1(U0;R). By further
restriction, the forms �tjW0

are also closed 1-forms on W0. Let � be a projection

map U0 ! W0 such that at any point x 2 W0 the tangent space to ��1(x) is the
symplectic normal space NxW0, and let 
t = �

�(�tjW0
). First we notice that, by

construction, the 1-form 
t is closed over U0, and at any point x 2 W0 the space
NxW0 lies in the kernel of 
t. Furthermore the composition of �� and the restric-

tion map induces the identity map over H1(U0;R), so [
t] = [�tjU0
] in H

1(U0;R).
Therefore there exist functions ft over U0 such that 
t = �t+dft at any point of U0.

Let gt be any smooth functions over X extending ft, and let �t = �t+ dgt. The
1-forms �t satisfy d�t = d�t = 
t, and since �tjU0

= 
t the space NxW0 also lies in

the kernel of �t at any x 2 W0. So Proposition 4 is proved.

5. Properties of the constructed submanifolds

5.1. Proof of Proposition 2. This proof is based on that of a similar result
obtained by Donaldson [D1] for the submanifolds obtained from Theorem 1 (r = 1).
The result comes from a Morse theory argument, as described in [D1]. Indeed,

consider the real valued function f = log jsj2 over X �W (where W = s
�1(0)). We

only have to show that, if k is large enough, all its critical points are of index at
least n� r + 1. For this purpose, let x be a critical point of f , and let us compute
the derivative �@@f at x.

First we notice that x is also a critical point of jsj2, so that s itself is not in the
image of rxs. Recalling that s is �-transverse to 0 for some � > 0, it follows that
rxs is not surjective and thus js(x)j � �.

Recalling that the scalar product is linear in the �rst variable and antilinear in

the second variable, we compute the derivative

@ log jsj2 =
1

jsj2
(h@s; si+ hs; �@si);
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which equals zero at x. A �rst consequence is that, at x, jh@s; sij = jh�@s; sij < Cjsj,
where C is a constant bounding �@s independently of k.

A second derivation, omitting the quantities that vanish at a critical point, yields

that, at x,

�@@ log jsj2 =
1

jsj2
(h�@@s; si � h@s; @si + h�@s; �@si+ hs; @ �@si):

Recall that �@@+ @ �@ is equal to the part of type (1,1) of the curvature of the bundle

E 
 L
k. This is equal to �ik! 
 Id + R, where R is the part of type (1,1) of the

curvature of E, so that at x,

�@@ log jsj2 = �ik! +
1

jsj2
(hR:s; si � h@ �@s; si+ hs; @ �@si � h@s; @si + h�@s; �@si):

To go further, we have to restrict our choice of vectors to a subspace of the
tangent space TxX at x. Call � the space of all vectors v in TxX such that @s(v)
belongs to the complex line generated by s in (E 
 L

k)x. The subspace � of TxX

is clearly stable by the almost-complex structure, and its complex dimension is at
least n � r + 1. For any vector v 2 �, jh@s(v); sij = j@s(v)j jsj is smaller than
jvj jh@s; sij < Cjvj jsj where C is the same constant as above, so that @s is O(1)
over �.

Since �@s = O(1) and @ �@s = O(k1=2) because of asymptotic holomorphicity, it

is now known that the restriction to � of �@@ log jsj2 is equal to �ik ! + O(k1=2).
It follows that, for all large k, given any unit length vector u 2 �, the quantity
�2i �@@f(u; Ju), which equals Hf(u)+Hf(Ju) where Hf is the Hessian of f at x, is
negative. If the index of the critical point at x were less than n� r+1, there would
exist a subspace P � TxX of real dimension at least n + r over which Hf is non-
negative, and the subspace P \ JP of real dimension at least 2r would necessarily
intersect non-trivially � whose real dimension is at least 2n� 2r+2, contradicting
the previous remark. The index of the critical point x of f is thus at least n�r+1.

A standard Morse theory argument then implies that the inclusion W ! X

induces an isomorphism on all homotopy (and homology) groups up to �n�r�1

(resp. Hn�r�1), and a surjection on �n�r (resp. Hn�r), which completes the proof
of Proposition 2.

5.2. Homology and Chern numbers of the submanifolds. Proposition 2
allows one to compute the middle-dimensional Betti number bn�r=dimHn�r(Wk;R)
of the constructed submanifolds. Indeed the tangent bundle TWk and the normal

bundle NWk (isomorphic to the restriction to Wk of E 
 L
k) are both symplectic

vector bundles over Wk. So it is well-known (see e.g. [McS1], p. 67) that they
admit underlying structures of complex vector bundles, uniquely determined up to
homotopy (in our case there exist J-stable subspaces in TX very close to TWk

and NWk, so after a small deformation one can think of these complex structures

as induced by J). Furthermore one has TWk � NWk ' TXjWk
. It follows that,

calling i the inclusion map Wk ! X, the Chern classes of the bundle TWk can be
computed from the relation

i
�
c(TX) = i

�
c(E 
 L

k):c(TWk):
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Since cn�r(TWk):[Wk] is equal to the Euler-Poincaré characteristic of Wk, and since
the spaces Hi(Wk;R) have the same dimension as Hi(X;R) for i < n � r, the
dimension of Hn�r(Wk;R) follows immediately.

For further computations, we need an estimate on this dimension :

Proposition 5. For any sequence of symplectic submanifolds Wk � X of real
codimension 2r obtained as the zero sets of asymptotically holomorphic sections of
E 
 L

k which are transverse to 0, the Chern classes of Wk are given by

cl(TWk) = (�1)l
�
r+l�1

l

�
(k!̂)l +O(kl�1);

where !̂ denotes the class of 1
2�
! in the cohomology of Wk.

This can be proved by induction on l, starting from c0(TWk) = 1, since the

above equality implies that

cl(TWk) = i
�
cl(TX)�

l�1X
j=0

i
�
cl�j(E 
 L

k):cj(TWk):

It can be checked that i�cl�j(E
L
k) =

�
r

l�j

�
(k!̂)l�j +O(kl�j�1), so that the result

follows from a combinatorial calculation showing that
Pl

j=0(�1)
j
�
r

l�j

��
r+j�1

j

�
is

equal to 0.

Since [Wk] is Poincaré dual inX to cr(E
L
k), Proposition 5 yields that �(Wk) =

cn�r(TWk):[Wk] = (�1)n�r
�
n�1

n�r

�
(k!̂)n�r:(k!̂)r:[X] + O(kn�1): Finally, Proposition

2 implies that �(Wk) = (�1)n�r dimHn�r(Wk;R) +O(1), so that

dimHn�r(Wk;R) =
�
n�1

n�r

�
( 1
2�
[!])n kn +O(kn�1):

5.3. Geometry of the submanifolds. Aside from the above topological in-
formation on the submanifolds, one can also try to characterize the geometry of

Wk inside X. We prove the following result, expressing the fact that the middle-
dimensional homology of Wk has many generators that are very �localized� around
any given point of X :

Proposition 6. There exists a constant C > 0 depending only on the geometry
of the manifold X with the following property : let B be any ball of small enough
radius � > 0 in X. For any sequence of symplectic submanifolds Wk � X of real
codimension 2r obtained as the zero sets of asymptotically holomorphic sections of
E
Lk which are transverse to 0, let Nk(B) be the number of independent generators
of Hn�r(Wk;R) which can be realized by cycles that are entirely included in Wk\B.
Then, if k is large enough, one has

Nk(B) > C �
2n dimHn�r(Wk;R):

As a consequence, we can state that when k becomes large the submanifolds
Wk tend to ��ll out� all of X, since they must intersect non-trivially with any given

ball.

The proof of Proposition 6 relies on the study of what happens when we perform

a symplectic blow-up on the manifoldX inside the ball B. Recall that the blown-up

manifold ~X is endowed with a symplectic form ~! which is equal to ! outside of B,
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and can be described inside B using the following model on C n around 0 : de�ne
on C n � (C n � f0g) the 2-form

� = i@ �@
�
(� Æ p1)(log k � k

2 Æ p2)
�
;

where p1 is the projection map to C n , � is a cut-o� function around the blow-up
point, and p2 is the projection on the factor C n � f0g. The 2-form � projects to

C n�C Pn�1, and after restriction to the graph of the blown-up manifold (i.e. the set
of all (x; y) such that x belongs to the complex line in C n de�ned by y) one obtains

a closed 2-form whose restriction to the exceptional divisor is positive. Calling � the

2-form on ~X supported in B de�ned by this procedure, it can be checked that, if

� > 0 is small enough and � is the projection map ~X ! X, the 2-form ~! = �
�
!+ ��

is symplectic on ~X.

If we call e 2 H
2( ~X;Z) the Poincaré dual of the exceptional divisor, since

its normal bundle is the inverse of the standard bundle over C P
n�1, we have

(�e)n�1
:e:[X] = 1, so that en:[X] = (�1)n�1. Furthermore, the cohomology class

of ~! is given by 1
2�
[~!] = 1

2�
�
�[!]� � e. Now we consider the sections sk of E 
 L

k

over X which de�ne Wk, and assuming ��1 to be an integer we write k = K + ~k
with 0 � ~k < �

�1 and �K 2 N . Notice that ~! = �
�
! outside B and that we can

safely choose a metric on ~X with the same property. Considering that the line

bundle ~LK on ~X whose �rst Chern class is K
2�
[~!] is isomorphic to ��LK over ~X�B,

the sections ��sk of ��(E 
 L
k) = �

�(E 
 L
~k) 
 �

�
L
K obtained by pull-back of

sk satisfy all desired conditions outside B, namely asymptotic holomorphicity and

transversality to 0. If we multiply ��sk by a cut-o� function equal to 1 over ~X �B

and vanishing over the support of �, we now obtain asymptotically holomorphic

sections of ��(E 
 L
~k) 
 ~LK over ~X which are transverse to 0 over ~X � B. So,

if K is large enough, we can use the construction described in Theorems 2 and 3

to perturb these sections over B only to make them transverse to 0 over all of ~X.

Since there are only �nitely many values of ~k, the bounds on K required for each ~k
translate as a single bound on k. Considering the zero sets of the resulting sections,

we thus obtain symplectic submanifolds ~Wk � ~X to which we can again apply

Propositions 2 and 5. The interesting remark is that, using the above estimate for

dimHn�r( ~Wk;R), since (
1
2�
[~!])n = ( 1

2�
[!])n � �

n (symplectic blow-ups decrease the

symplectic volume), we get for all large k

dimHn�r( ~Wk;R) = dimHn�r(Wk;R) � �
n
�
n�1

n�r

�
k
n +O(kn�1):

This means that we have decreased the dimension of Hn�r(Wk;R) by changing the
picture only inside the ball B. To continue we need an estimate on the dependence

of � on the radius � of the ball. The main constraint on � is that �� should be
much smaller than �

�
! so that the perturbation does not a�ect the positivity of

�
�
!. The norm of � is directly related to that of the second derivative @ �@� of the

cut-o� function �. Since the only constraint on � is that it should be 0 outside B
and 1 near the blow-up point, an appropriate choice of � leads to a bound of the

type j@ �@�j = O(��2). It follows that � can be chosen equal at least to a constant
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times �2. So we obtain that, for a suitable value of C and for all large enough k,

dimHn�r( ~Wk;R) < (1� 2C�2n) dimHn�r(Wk;R):

Proposition 6 now follows immediately from the following general lemma by decom-
posing Wk into (Wk �B) [ (Wk \B) and perturbing slightly � if necessary so that
the boundary of B is transverse to Wk :

Lemma 6. Let W be a 2d-dimensional compact manifold which decomposes into
two piecesW = A[B glued along their common boundary S, which is a smooth codi-

mension 1 submanifold in W . Assume that there exists a manifold ~W which is iden-

tical to W outside of B, and such that dimHd( ~W;R) � dimHd(W;R) � N . Then
there exists an N

2
-dimensional subspace in Hd(W;R) consisting of classes which can

be represented by cycles contained in B.

To prove this lemma, let H = Hd(W;R) and consider its subspaces F consisting
of all classes which can be represented by a cycle contained in A and G consisting

of all classes representable in B. We have to show that dimG � N
2
. Let G? be

the subspace of H orthogonal to G with respect to the intersection pairing, namely
the set of classes which intersect trivially with all classes in G. We claim that
G
? � F +G.
Indeed, let � be a cycle realizing a class in G?. Subdividing � along its inter-

section with the common boundary S of A and B, we have � = �1 + �2 where
�1 and �2 are chains respectively in A and B, such that @�1 = �@�2 = � is a
(d � 1)-cycle contained in S. However � intersects trivially with any d-cycle in S
since � intersects trivially with all cycles that have a representative in B. So the

homology class represented by � in Hd�1(S;R) is trivial, and we have � = @
 for
some d-chain 
 in S. Writing � = (�1 � 
) + (�2 + 
) and shifting slightly the two
copies of 
 on either side of S, we get that [�] 2 F +G.

It follows that, if FG is a supplementary of F\G in F , dimFG+dimG = dim(F+
G) is larger than dimG

? � dimH � dimG, so that dimG � 1
2
(dimH � dimFG).

Thus it only remains to show that dimFG � dimHd( ~W;R) to complete the proof of
the lemma. To do this, we remark that the morphism h : Hd(W ;R) ! Hd(W;B;R)
in the relative homology sequence is injective on FG, since its kernel is precisely G.

However, if we de�ne ~F and ~G inside Hd( ~W;R) similarly to F and G, the subspace
~F ~G similarly injects intoHd( ~W; ~B;R). Furthermore, the images of the two injections

are both equal to the image of the morphism Hd(A;R) ! Hd(A; S;R) under the

identi�cation Hd( ~W; ~B;R) ' Hd(A; S;R) ' Hd(W;B;R), so that dimHd( ~W;R) �
dim ~F ~G = dimFG and the proof is complete.

6. Conclusion

This paper has extended the �eld of applicability of the construction outlined by
Donaldson [D1] to more general vector bundles. It is in fact probable that similar
methods can be used in other situations involving sequences of vector bundles whose
curvatures become very positive.

The statement that, in spite of the high �exibility of the construction, the sub-

manifolds obtained as zero sets of asymptotically holomorphic sections of E 
 L
k
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which are transverse to 0 are all isotopic for a given large enough k, has impor-
tant consequences. Indeed, as suggested by Donaldson, it may allow the de�nition
of relatively easily computable invariants of higher-dimensional symplectic mani-

folds from the topology of their submanifolds, for example from the Seiberg-Witten
invariants of 4-dimensional submanifolds [T1][W]. Furthermore, it facilitates the
characterization of the topology of the constructed submanifolds in many cases,
thus leading the way to many examples of symplectic manifolds, some of them
possibly new.



CHAPITRE III

Symplectic 4-manifolds as branched coverings of C P2

Abstract. We show that every compact symplectic 4-manifoldX

can be topologically realized as a covering of C P2 branched along

a smooth symplectic curve in X which projects as an immersed

curve with cusps in C P
2. Furthermore, the covering map can be

chosen to be approximately pseudo-holomorphic with respect to

any given almost-complex structure on X.

1. Introduction

It has recently been shown by Donaldson [D2] that the existence of approxi-
mately holomorphic sections of very positive line bundles over compact symplectic
manifolds allows the construction not only of symplectic submanifolds ([D1], see

also [A1],[Pa]) but also of symplectic Lefschetz pencil structures. The aim of this
paper is to show how similar techniques can be applied in the case of 4-manifolds
to obtain maps to C P2, thus proving that every compact symplectic 4-manifold is
topologically a (singular) branched covering of C P2.

Let (X;!) be a compact symplectic 4-manifold such that the cohomology class
1
2�
[!] 2 H

2(X;R) is integral. This integrality condition does not restrict the dif-
feomorphism type of X in any way, since starting from an arbitrary symplectic
structure one can always perturb it so that 1

2�
[!] becomes rational, and then mul-

tiply ! by a constant factor to obtain integrality. A compatible almost-complex
structure J on X and the corresponding Riemannian metric g are also �xed.

Let L be the complex line bundle on X whose �rst Chern class is c1(L) =
1
2�
[!]. Fix a Hermitian structure on L, and let rL be a Hermitian connection on L

whose curvature 2-form is equal to �i! (it is clear that such a connection always
exists). The key observation is that, for large values of an integer parameter k, the
line bundles Lk admit many approximately holomorphic sections, thus making it
possible to obtain sections which have nice transversality properties.

For example, one such section can be used to de�ne an approximately holomor-

phic symplectic submanifold in X [D1]. Similarly, constructing two sections sat-
isfying certain transversality requirements yields a Lefschetz pencil structure [D2].
In our case, the aim is to construct, for large enough k, three sections s0k, s

1
k and

s
2
k of Lk satisfying certain transversality properties, in such a way that the three

sections do not vanish simultaneously and that the map from X to C P2 de�ned by
x 7! [s0k(x) : s

1
k(x) : s

2
k(x)] is a branched covering.

Let us now describe more precisely the notion of approximately holomorphic
singular branched covering. Fix a constant � > 0, and let U be a neighborhood of a

point x in an almost-complex 4-manifold. We say that a local complex coordinate

31
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map � : U ! C 2 is �-approximately holomorphic if, at every point, j��J � J0j � �,
where J0 is the canonical complex structure on C 2 . Another equivalent way to state
the same property is the bound j�@�(u)j � �jr�(u)j for every tangent vector u.

Definition 1. A map f : X ! C P
2 is locally �-holomorphically modelled at

x on a map g : C 2 ! C 2 if there exist neighborhoods U of x in X and V of f(x)
in C P

2, and �-approximately holomorphic C1 coordinate maps � : U ! C 2 and
 : V ! C 2 such that f =  

�1 Æ g Æ � over U .

Definition 2. A map f : X ! C P
2 is an �-holomorphic singular covering

branched along a submanifold R � X if its di�erential is surjective everywhere
except at the points of R, where rank(df) = 2, and if at any point x 2 X it is locally
�-holomorphically modelled on one of the three following maps :

(i) local di�eomorphism : (z1; z2) 7! (z1; z2) ;
(ii) branched covering : (z1; z2) 7! (z21 ; z2) ;
(iii) cusp covering : (z1; z2) 7! (z31 � z1z2; z2).

In particular it is clear that the cusp model occurs only in a neighborhood of
a �nite set of points C � R, and that the branched covering model occurs only in
a neighborhood of R (away from C), while f is a local di�eomorphism everywhere
outside of a neighborhood of R. Moreover, the set of branch points R and its
projection f(R) can be described as follows in the local models : for the branched

covering model, R = f(z1; z2); z1 = 0g and f(R) = f(x; y); x = 0g ; for the cusp
covering model, R = f(z1; z2); 3z

2
1 � z2 = 0g and f(R) = f(x; y); 27x2� 4y3 = 0g.

It follows that, if � < 1, R is a smooth 2-dimensional submanifold in X, approx-
imately J-holomorphic, and therefore symplectic, and that f(R) is an immersed

symplectic curve in C P
2 except for a �nite number of cusps.

We now state our main result :

Theorem 1. For any � > 0 there exists an �-holomorphic singular covering
map f : X ! C P

2.

The techniques involved in the proof of this result are similar to those intro-

duced by Donaldson in [D1] : the �rst ingredient is a local transversality result
stating roughly that, given approximately holomorphic sections of certain bundles,
it is possible to ensure that they satisfy certain transversality estimates over a small
ball in X by adding to them small and localized perturbations. The other ingre-

dient is a globalization principle, which, if the small perturbations providing local
transversality are su�ciently well localized, ensures that a transversality estimate
can be obtained over all of X by combining the local perturbations.

We now de�ne more precisely the notions of approximately holomorphic sections

and of transversality with estimates. We will be considering sequences of sections of
complex vector bundles Ek over X, for all large values of the integer k, where each
of the bundles Ek carries naturally a Hermitian metric and a Hermitian connection.
These connections together with the almost complex structure J on X yield @ and �@
operators on Ek. Moreover, we choose to rescale the metric on X, and use gk = k:g :

for example, the diameter of X is multiplied by k1=2, and all derivatives of order
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p are divided by kp=2. The reason for this rescaling is that the vector bundles Ek

we will consider are derived from L
k, on which the natural Hermitian connection

induced by rL has curvature �ik!.

Definition 3. Let (sk)k�0 be a sequence of sections of complex vector bundles
Ek over X. The sections sk are said to be asymptotically holomorphic if there
exist constants (Cp)p2N such that, for all k and at every point of X, jskj � C0,

jrp
skj � Cp and jrp�1 �@skj � Cpk

�1=2 for all p � 1, where the norms of the
derivatives are evaluated with respect to the metrics gk = k g.

Definition 4. Let sk be a section of a complex vector bundle Ek, and let � > 0
be a constant. The section sk is said to be �-transverse to 0 if, at any point x 2 X
where jsk(x)j < �, the covariant derivative rsk(x) : TxX ! (Ek)x is surjective and
has a right inverse of norm less than ��1 w.r.t. the metric gk.

We will often say that a sequence (sk)k�0 of sections of Ek is transverse to 0
(without precising the constant) if there exists a constant � > 0 independent of k
such that �-transversality to 0 holds for all large k.

In this de�nition of transversality, two cases are of speci�c interest. First, when

Ek is a line bundle, and if one assumes the sections to be asymptotically holomor-
phic, transversality to 0 can be equivalently expressed by the property

8x 2 X; jsk(x)j < � ) jrsk(x)jgk > �:

Next, when Ek has rank greater than 2 (or more generally than the complex di-
mension of X), the property actually means that jsk(x)j � � for all x 2 X.

An important point to keep in mind is that transversality to 0 is an open prop-
erty : if s is �-transverse to 0, then any section � such that js � �jC1 < � is

(� � �)-transverse to 0.
The interest of such a notion of transversality with estimates is made clear by

the following observation :

Lemma 1. Let 
k be asymptotically holomorphic sections of vector bundles Ek

over X, and assume that the sections 
k are transverse to 0. Then, for large enough
k, the zero set of 
k is a smooth symplectic submanifold in X.

This lemma follows from the observation that, where 
k vanishes, j�@
kj =

O(k�1=2) by the asymptotic holomorphicity property while @
k is bounded from
below by the transversality property, thus ensuring that for large enough k the zero
set is smooth and symplectic, and even asymptotically J-holomorphic. We can now
write our second result, which is a one-parameter version of Theorem 1 :

Theorem 2. Let (Jt)t2[0;1] be a family of almost-complex structures on X com-
patible with !. Fix a constant � > 0, and let (st;k)t2[0;1];k�0 be asymptotically Jt-

holomorphic sections of C 3 
 L
k, such that the sections st;k and their derivatives

depend continuously on t.
Then, for all large enough values of k, there exist asymptotically Jt-holomorphic

sections �t;k of C 3 
 L
k, nowhere vanishing, depending continuously on t, and such

that, for all t 2 [0; 1], j�t;k � st;kjC3;gk � � and the map X ! C P
2 de�ned by �t;k is

an approximately holomorphic singular covering with respect to Jt.
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Note that, although we allow the almost-complex structure on X to depend on
t, we always use the same metric gk = k g independently of t. Therefore, there is
no special relation between gk and Jt. However, since the parameter space [0; 1] is
compact, we know that the metric de�ned by ! and Jt di�ers from g by at most
a constant factor, and therefore up to a change in the constants this has no real
in�uence on the transversality and holomorphicity properties.

We now describe more precisely the properties of the approximately holomorphic
singular coverings constructed in Theorems 1 and 2, in order to state a uniqueness
result for such coverings.

Definition 5. Let sk be nowhere vanishing asymptotically holomorphic sections
of C 3 
 L

k. De�ne the corresponding projective maps fk = Psk from X to C P
2 by

fk(x) = [s0k(x) : s
1
k(x) : s

2
k(x)]. De�ne the (2; 0)-Jacobian Jac(fk) = det(@fk), which

is a section of the line bundle �2;0
T
�
X 
 f

�
k�

2;0
T C P

2 = KX 
 L
3k. Finally, de�ne

R(sk) to be the set of points of X where Jac(fk) vanishes, i.e. where @fk is not
surjective.

Given a constant 
 > 0, we say that sk satis�es the transversality property P3(
)
if jskj � 
 and j@fkjgk � 
 at every point of X, and if Jac(fk) is 
-transverse to 0.

If sk satis�es P3(
) for some 
 > 0 and if k is large enough, then it follows from
Lemma 1 that R(sk) is a smooth symplectic submanifold in X. By analogy with

the expected properties of the set of branch points, it is therefore natural to require
such a property for the sections which de�ne our covering maps.

Furthermore, recall that one expects the projection to C P2 of the set of branch
points to be an immersed curve except at only �nitely many non-degenerate cusps.

Forget temporarily the antiholomorphic derivative �@fk, and consider only the holo-
morphic part. Then the cusps correspond to the points of R(sk) where the kernel of
@fk and the tangent space to R(sk) coincide (in other words, the points where the
tangent space to R(sk) becomes �vertical�). Since R(sk) is the set of points where
Jac(fk) = 0, the cusp points are those where the quantity @fk ^ @Jac(fk) vanishes.

Note that, along R(sk), @fk has complex rank 1 and so is actually a nowhere

vanishing (1; 0)-form with values in the rank 1 subbundle Im @fk � f
�
kT C P

2. In a
neighborhood of R(sk), this is no longer true, but one can project @fk onto a rank 1

subbundle in f �kT C P
2, thus obtaining a nonvanishing (1; 0)-form �(@fk) with values

in a line bundle. Cusp points are then characterized in R(sk) by the vanishing of
�(@fk) ^ @Jac(fk), which is a section of a line bundle. Therefore, it is natural to
require that the restriction to R(sk) of this last quantity be transverse to 0, since

it implies that the cusp points are isolated and in some sense non-degenerate.
It is worth noting that, up to a change of constants in the estimates, this

transversality property is actually independent of the choice of the subbundle of
f
�
kT C P

2 on which one projects @fk, as long as �(@fk) remains bounded from below.

For convenience, we introduce the following notations :

Definition 6. Let sk be asymptotically holomorphic sections of C 3 
 L
k and

fk = Psk. Assume that sk satis�es P3(
) for some 
 > 0. Consider the rank
one subbundle (Im @fk)jR(sk) of f �kT C P

2 over R(sk), and de�ne L(sk) to be its

extension over a neighborhood of R(sk) as a subbundle of f �kT C P
2, constructed by
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radial parallel transport along directions normal to R(sk). Finally, de�ne, over the
same neighborhood of R(sk), T (sk) = �(@fk)^@Jac(fk), where � : f �kT C P

2 ! L(sk)
is the orthogonal projection.

We say that asymptotically holomorphic sections sk of C 3 
 L
k are 
-generic if

they satisfy P3(
) and if the restriction to R(sk) of T (sk) is 
-transverse to 0 over
R(sk). We then de�ne the set of cusp points C(sk) as the set of points of R(sk)
where T (sk) = 0.

In a holomorphic setting, such a genericity property would be su�cient to ensure
that the map fk = Psk is a singular branched covering. However, in our case, extra
di�culties arise because we only have approximately holomorphic sections. This

means that at a point of R(sk), although @fk has rank 1, we have no control over
the rank of �@fk, and the local picture may be very di�erent from what one expects.
Therefore, we need to control the antiholomorphic part of the derivative along the
set of branch points by adding the following requirement :

Definition 7. Let sk be 
-generic asymptotically J-holomorphic sections of
C 3 
 L

k. We say that sk is �@-tame if there exist constants (Cp)p2N and c > 0,
depending only on the geometry of X and the bounds on sk and its derivatives,

and an !-compatible almost complex structure ~Jk, such that the following properties
hold :

(1) 8p 2 N, jrp( ~Jk � J)jgk � Cpk
�1=2 ;

(2) the almost-complex structure ~Jk is integrable over the set of points whose
gk-distance to C ~Jk

(sk) is less than c (the subscript indicates that one uses @ ~Jk
rather

than @J to de�ne C(sk)) ;
(3) the map fk = Psk is ~Jk-holomorphic at every point of X whose gk-distance

to C ~Jk
(sk) is less than c ;

(4) at every point of R ~Jk
(sk), the antiholomorphic derivative �@ ~Jk

(Psk) vanishes

over the kernel of @ ~Jk
(Psk).

Note that since ~Jk is within O(k�1=2) of J , the notions of asymptotic J-holo-

morphicity and asymptotic ~Jk-holomorphicity actually coincide, because the @ and
�@ operators di�er only by O(k�1=2). Furthermore, if k is large enough, then 
-

genericity for J implies 
0-genericity for ~Jk as well for some 
0 slightly smaller than

 ; and, because of the transversality properties, the sets R ~Jk

(sk) and C ~Jk
(sk) lie

within O(k�1=2) of RJ(sk) and CJ(sk).
In the case of families of sections depending continuously on a parameter t 2

[0; 1], it is natural to also require that the almost complex structures ~Jt;k close to
Jt for every t depend continuously on t. We claim the following :

Theorem 3. Let sk be asymptotically J-holomorphic sections of C 3 
 L
k. As-

sume that the sections sk are 
-generic and �@-tame. Then, for all large enough
values of k, the maps fk = Psk are �k-holomorphic singular branched coverings, for
some constants �k = O(k�1=2).

Therefore, in order to prove Theorems 1 and 2 it is su�cient to construct 
-

generic and �@-tame sections (resp. one-parameter families of sections) of C 3 
 L
k.
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Even better, we have the following uniqueness result for these particular singular
branched coverings :

Theorem 4. Let s0;k and s1;k be sections of C
3
Lk, asymptotically holomorphic

with respect to !-compatible almost-complex structures J0 and J1 respectively. As-
sume that s0;k and s1;k are 
-generic and �@-tame. Then there exist almost-complex
structures (Jt)t2[0;1] interpolating between J0 and J1, and a constant � > 0, with
the following property : for all large enough k, there exist sections (st;k)t2[0;1];k�0 of

C 3 
Lk interpolating between s0;k and s1;k, depending continuously on t, which are,

for all t 2 [0; 1], asymptotically Jt-holomorphic, �-generic and �@-tame with respect
to Jt.

In particular, for large k the two approximately holomorphic singular branched
coverings Ps0;k and Ps1;k are isotopic among approximately holomorphic singular
branched coverings.

Therefore, there exists for all large k a canonical isotopy class of singular bran-

ched coverings X ! C P
2, which could potentially be used to de�ne symplectic

invariants of X.

The remainder of this article is organized as follows : Section 2 describes the
process of perturbing asymptotically holomorphic sections of bundles of rank greater
than 2 to make sure that they remain away from zero. Section 3 deals with further

perturbation in order to obtain 
-genericity. Section 4 describes a way of achieving
�@-tameness, and therefore completes the proofs of Theorems 1, 2 and 4. Finally,
Theorem 3 is proved in Section 5, and Section 6 deals with various related remarks.

Acknowledgments. The author wishes to thank Misha Gromov for valuable
suggestions and comments, and Christophe Margerin for helpful discussions.

2. Nowhere vanishing sections

2.1. Non-vanishing of sk. Our strategy to prove Theorem 1 is to start with
given asymptotically holomorphic sections sk (for example sk = 0) and perturb
them in order to obtain the required properties ; the proof of Theorem 2 then relies
on the same arguments, with the added di�culty that all statements must apply to

1-parameter families of sections.
The �rst step is to ensure that the three components s0k, s

1
k and s

2
k do not vanish

simultaneously, and more precisely that, for some constant � > 0 independent of k,
the sections sk are �-transverse to 0, i.e. jskj � � over all of X. Therefore, the �rst

ingredient in the proof of Theorems 1 and 2 is the following result :

Proposition 1. Let (sk)k�0 be asymptotically holomorphic sections of C 3
Lk,
and �x a constant � > 0. Then there exists a constant � > 0 such that, for all large
enough values of k, there exist asymptotically holomorphic sections �k of C 3 
 L

k

such that j�k � skjC3;gk � � and that j�kj � � at every point of X. Moreover, the
same statement holds for families of sections indexed by a parameter t 2 [0; 1].

Proposition 1 is a direct consequence of the main theorem in [A1], where it

is proved that, given any complex vector bundle E, asymptotically holomorphic
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sections of E
Lk (or 1-parameter families of such sections) can be made transverse
to 0 by small perturbations : Proposition 1 follows simply by considering the case
where E is the trivial bundle of rank 3. However, for the sake of completeness and

in order to introduce tools which will also be used in later parts of the proof, we
give here a shorter argument dealing with the speci�c case at hand.

There are three ingredients in the proof of Proposition 1. The �rst one is the
existence of many localized asymptotically holomorphic sections of the line bundle
L
k for su�ciently large k.

Definition 8. A section s of a vector bundle Ek has Gaussian decay in C
r

norm away from a point x 2 X if there exists a polynomial P and a constant
� > 0 such that for all y 2 X, js(y)j, jrs(y)jgk, : : : , jr

r
s(y)jgk are all bounded by

P (d(x; y)) exp(�� d(x; y)2), where d(:; :) is the distance induced by gk.
The decay properties of a family of sections are said to be uniform if there exist

P and � such that the above bounds hold for all sections of the family, independently
of k and of the point x at which decay occurs for a given section.

Lemma 2 ([D1],[A1]). Given any point x 2 X, for all large enough k, there
exist asymptotically holomorphic sections srefk;x of Lk over X satisfying the following

bounds : jsrefk;xj � cs at every point of the ball of gk-radius 1 centered at x, for some

universal constant cs > 0 ; and the sections srefk;x have uniform Gaussian decay away

from x in C3 norm.
Moreover, given a one-parameter family of !-compatible almost-complex struc-

tures (Jt)t2[0;1], there exist one-parameter families of sections sreft;k;x which are asymp-
totically Jt-holomorphic for all t, depend continuously on t and satisfy the same
bounds.

The �rst part of this statement is Proposition 11 of [D1], while the extension
to one-parameter families is carried out in Lemma 3 of [A1]. Note that here we
require decay with respect to the C3 norm instead of C0, but the bounds on all
derivatives follow immediately from the construction of these sections : indeed,

they are modelled on f(z) = exp(�jzj2=4) in a local approximately holomorphic
Darboux coordinate chart for k! at x and in a suitable local trivialization of Lk

where the connection 1-form is 1
4

P
(zjd�zj � �zjdzj). Therefore, it is su�cient to

notice that the model function has Gaussian decay and that all derivatives of the

coordinate map are uniformly bounded because of the compactness of X.
More precisely, the result of existence of local approximately holomorphic Dar-

boux coordinate charts needed for Lemma 2 (and throughout the proofs of the main
theorems as well) is the following (see also [D1]) :

Lemma 3. Near any point x 2 X, for any integer k, there exist local complex
Darboux coordinates (z1k; z

2
k) : (X; x)! (C 2

; 0) for the symplectic structure k! (i.e.
such that the pullback of the standard symplectic structure of C 2 is k!) such that,
denoting by  k : (C 2

; 0) ! (X; x) the inverse of the coordinate map, the following
bounds hold uniformly in x and k : jz1k(y)j + jz2k(y)j = O(distgk(x; y)) on a ball of
�xed radius around x ; jrr

 kjgk = O(1) for all r � 1 on a ball of �xed radius around
0 ; and, with respect to the almost-complex structure J on X and the canonical
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complex structure J0 on C 2 , j�@ k(z)jgk = O(k�1=2jzj) and jrr �@ jgk = O(k�1=2) for
all r � 1 on a ball of �xed radius around 0.

Moreover, given a continuous 1-parameter family of !-compatible almost-complex
structures (Jt)t2[0;1] and a continuous family of points (xt)t2[0;1], one can �nd for all
t coordinate maps near xt satisfying the same estimates and depending continuously
on t.

Proof. By Darboux's theorem, there exists a local symplectomorphism � from
a neighborhood of 0 in C 2 with its standard symplectic structure to a neighborhood
of x in (X;!). It is well-known that the space of symplectic R-linear endomorphisms
of C 2 which intertwine the complex structures J0 and �

�
J(x) is non-empty (and

actually isomorphic to U(2)). So, choosing such a linear map 	 and de�ning  =
�Æ	, one gets a local symplectomorphism such that �@ (0) = 0. Moreover, because
of the compactness of X, it is possible to carry out the construction in such a
way that, with respect to the metric g, all derivatives of  are bounded over a
neighborhood of x by uniform constants which do not depend on x. Therefore, over a

neighborhood of x one can assume that jr( �1)jg = O(1), as well as jrr
 jg = O(1)

and jrr �@ jg = O(1) 8r � 1.

De�ne  k(z) =  (k�1=2
z), and switch to the metric gk : then �@ k(0) = 0, and

at every point near x, jr( �1
k )jgk = jr( �1)jg = O(1). Moreover, jrr

 kjgk =

O(k(1�r)=2) = O(1) and jrr �@ kjgk = O(k�r=2) = O(k�1=2) for all r � 1. Finally,

since jr�@ kjgk = O(k�1=2) and �@ k(0) = 0 we have j�@ k(z)jgk = O(k�1=2jzj), so
that all expected estimates hold. Because of the compactness of X, the estimates
are uniform in x, and because the maps  k for di�erent values of k di�er only by a

rescaling, the estimates are also uniform in k.

In the case of a one-parameter family of almost-complex structures, there is

only one thing to check in order to carry out the same construction for every value
of t 2 [0; 1] while ensuring continuity in t : given a one-parameter family of local
Darboux maps �t near xt (the existence of such maps depending continuously on
t is trivial), one must check the existence of a continuous one-parameter family of

R-linear symplectic endomorphisms 	t of C
2 intertwining the complex structures

J0 and �
�
tJt(xt) on C 2 . To prove this, remark that for every t the set of these

endomorphisms of C 2 can be identi�ed with the group U(2). Therefore, what we
are looking for is a continuous section (	t)t2[0;1] of a principal U(2)-bundle over

[0; 1]. Since [0; 1] is contractible, this bundle is necessarily trivial and therefore has
a continuous section. This proves the existence of the required maps 	t, so one can
de�ne  t = �t Æ 	t, and set  t;k(z) =  t(k

�1=2
z) as above. The expected bounds

follow naturally ; the estimates are uniform in t because of the compactness of
[0; 1].

The second tool we need for Proposition 1 is the following local transversality
result, which involves ideas similar to those in [D1] and in �2 of [A1] but applies to
maps from C n to C m with m > n rather than m = 1 :

Proposition 2. Let f be a function de�ned over the ball B+ of radius 11
10

in

C n with values in C m , with m > n. Let Æ be a constant with 0 < Æ <
1
2
, and let
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� = Æ log(Æ�1)�p where p is a suitable �xed integer depending only on the dimension
n. Assume that f satis�es the following bounds over B+ :

jf j � 1; j�@f j � �; jr�@f j � �:

Then, there exists w 2 C m , with jwj � Æ, such that jf � wj � � over the interior
ball B of radius 1.

Moreover, if one considers a one-parameter family of functions (ft)t2[0;1] sat-
isfying the same bounds, then one can �nd for all t elements wt 2 C m depending
continuously on t such that jwtj � Æ and jft � wtj � � over B.

This statement is proved in Section 2.3. The last, and most crucial, ingredient of
the proof of Proposition 1 is a globalization principle due to Donaldson [D1] which
we state here in a general form.

Definition 9. A family of properties P(�; x)x2X;�>0 of sections of bundles over
X is local and Cr-open if, given a section s satisfying P(�; x), any section � such
that j�(x) � s(x)j, jr�(x) � rs(x)j, : : : , jrr

�(x) � rr
s(x)j are smaller than �

satis�es P(�� C�; x), where C is a constant (independent of x and �).

For example, the property js(x)j � � is local and C0-open ; �-transversality to 0
of s at x is local and C1-open.

Proposition 3 ([D1]). Let P(�; x)x2X;�>0 be a local and C
r-open family of prop-

erties of sections of vector bundles Ek over X. Assume that there exist constants c,
c
0 and p such that, given any x 2 X, any small enough Æ > 0, and asymptotically
holomorphic sections sk of Ek, there exist, for all large enough k, asymptotically
holomorphic sections �k;x of Ek with the following properties : (a) j�k;xjCr;gk < Æ,

(b) the sections 1
Æ
�k;x have uniform Gaussian decay away from x in C

r-norm, and
(c) the sections sk + �k;x satisfy the property P(�; y) for all y 2 Bgk(x; c), with
� = c

0
Æ log(Æ�1)�p.

Then, given any � > 0 and asymptotically holomorphic sections sk of Ek, there
exist, for all large enough k, asymptotically holomorphic sections �k of Ek such
that jsk � �kjCr;gk < � and the sections �k satisfy P(�; x) 8x 2 X for some � > 0
independent of k.

Moreover the same result holds for one-parameter families of sections, provided
the existence of sections �t;k;x satisfying properties (a), (b), (c) and depending con-
tinuously on t 2 [0; 1].

This result is a general formulation of the argument contained in Section 3
of [D1] (see also [A1], �3.3 and 3.5). For the sake of completeness, let us recall
just a brief outline of the construction. To achieve property P over all of X, the

idea is to proceed iteratively : in step j, one starts from sections s
(j)

k satisfying

P(Æj; x) for all x in a certain (possibly empty) subset U
(j)

k � X, and perturbs

them by less than 1
2C
Æj (where C is the same constant as in De�nition 9) to get

sections s
(j+1)

k satisfying P(Æj+1; x) over certain balls of gk-radius c, with Æj+1 =

c
0(

Æj
2C
) log((

Æj
2C
)�1)�p. Because the property P is open, s

(j+1)

k also satis�es P(Æj+1; x)

over U
(j)

k , therefore allowing one to obtain P everywhere after a certain number N

of steps.
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The catch is that, since the value of Æj decreases after each step and we want
P(�; x) with � independent of k, the number of steps needs to be bounded inde-
pendently of k. However, the size of X for the metric gk increases as k increases,

and the number of balls of radius c needed to cover X therefore also increases. The
key observation due to Donaldson [D1] is that, because of the Gaussian decay of
the perturbations, if one chooses a su�ciently large constant D, one can in a single
step carry out perturbations centered at as many points as one wants, provided
that any two of these points are distant of at least D with respect to gk : the idea

is that each of the perturbations becomes su�ciently small in the vicinity of the
other perturbations in order to have no in�uence on property P there (up to a slight
decrease of Æj+1). Therefore the construction is possible with a bounded number of
steps N and yields property P(�; x) for all x 2 X and for all large enough k, with

� = ÆN independent of k.

We now show how to derive Proposition 1 from Lemma 2 and Propositions 2
and 3, following the ideas contained in [D1]. Proposition 1 follows directly from
Proposition 3 by considering the property P de�ned as follows : say that a section sk
of C 3
Lk satis�es P(�; x) if jsk(x)j � �. This property is local and open in C0-sense,
and therefore also in C3-sense. So it is su�cient to check that the assumptions of
Proposition 3 hold for P.

Let x 2 X, 0 < Æ <
1
2
, and consider asymptotically holomorphic sections sk of

C 3 
 L
k (or 1-parameter families of sections st;k). Recall that Lemma 2 provides

asymptotically holomorphic sections srefk;x of Lk which have Gaussian decay away

from x and remain larger than a constant cs over Bgk(x; 1). Therefore, dividing sk
by srefk;x yields asymptotically holomorphic functions uk on Bgk(x; 1) with values in

C 3 . Next, one uses a local approximately holomorphic coordinate chart as given
by Lemma 3 to obtain, after composing with a �xed dilation of C 2 if necessary,

functions vk de�ned on the ball B+ � C 2 , with values in C 3 , and satisfying the
estimates jvkj = O(1), j�@vkj = O(k�1=2) and jr�@vkj = O(k�1=2).

Let C0 be a constant bounding jsrefk;xjC3;gk, and let � = Æ
C0

log(( Æ
C0
)�1)�p. Then,

provided that k is large enough, Proposition 2 yields constants wk 2 C 3 , with
jwkj �

Æ
C0
, such that jvk � wkj � � over the unit ball in C 2 . Equivalently, one has

juk � wkj � � over Bgk(x; c) for some constant c. Multiplying by srefk;x again, one

gets that jsk � wk s
ref
k;xj � cs� over Bgk(x; c).

The assumptions of Proposition 3 are therefore satis�ed if one chooses � = cs�

(larger than c
0
Æ log(Æ�1)�p for a suitable constant c0 > 0) and �k;x = �wk s

ref
k;x.

Moreover, the same argument applies to one-parameter families of sections st;k (one

similarly constructs perturbations �t;k;x = �wt;k s
ref
t;k;x). So Proposition 3 applies,

which ends the proof of Proposition 1.

2.2. Non-vanishing of @fk. We have constructed asymptotically holomorphic
sections sk = (s0k; s

1
k; s

2
k) of C

3 
 L
k for all large enough k which remain away from

zero. Therefore, the maps fk = Psk from X to C P
2 are well de�ned, and they

are asymptotically holomorphic, because the lower bound on jskj implies that the

derivatives of fk are O(1) and that �@fk and its derivatives are O(k�1=2) (taking the
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metric gk on X and the standard metric on C P
2). Our next step is to ensure, by

further perturbation of the sections sk, that @fk vanishes nowhere and remains far
from zero :

Proposition 4. Let Æ and 
 be two constants such that 0 < Æ <



4
, and let

(sk)k�0 be asymptotically holomorphic sections of C 3 
 L
k such that jskj � 
 at

every point of X and for all k. Then there exists a constant � > 0 such that, for
all large enough values of k, there exist asymptotically holomorphic sections �k of
C 3 
 L

k such that j�k � skjC3;gk � Æ and that the maps fk = P�k satisfy the bound
j@fkjgk � � at every point of X. Moreover, the same statement holds for families
of sections indexed by a parameter t 2 [0; 1].

Proposition 4 is proved in the same manner as Proposition 1 and uses the same
three ingredients, namely Lemma 2 and Propositions 2 and 3. Proposition 4 follows
directly from Proposition 3 by considering the following property : say that a section
s of C 3 
 L

k of norm everywhere larger than 


2
satis�es P(�; x) if the map f = Ps

satis�es j@f(x)jgk � �. This property is local and open in C1-sense, and therefore
also in C3-sense, because the lower bound on jsj makes f depend nicely on s (by
the way, note that the bound jsj � 


2
is always satis�ed in our setting since one

considers only sections di�ering from sk by less than 


4
). So one only needs to check

that the assumptions of Proposition 3 hold for this property P.
Therefore, let x 2 X, 0 < Æ <




4
, and consider nonvanishing asymptotically

holomorphic sections sk of C
3 
Lk and the corresponding maps fk = Psk. Without

loss of generality, composing with a rotation in C 3 (constant over X), one can
assume that sk(x) is directed along the �rst component in C 3 , i.e. that s1k(x) =
s
2
k(x) = 0 and therefore js0k(x)j �




2
. Because one has a uniform bound on jrskj,

there exists a constant r > 0 (independent of k) such that js0kj �



3
over Bgk(x; r).

Therefore, over this ball one can de�ne a map to C 2 by

hk(y) = (h1k(y); h
2
k(y)) =

�
s
1
k(y)

s0k(y)
;
s
2
k(y)

s0k(y)

�
:

It is quite easy to see that, at any point y 2 Bgk(x; r), the ratio between j@hk(y)j
and j@fk(y)j is bounded by a uniform constant. Therefore, what one actually needs
to prove is that, for large enough k, a perturbation of sk with Gaussian decay and
smaller than Æ can make j@hkj larger than � = c

0
Æ (log Æ�1)�p over a ball Bgk(x; c),

for some constants c, c0 and p.

Recall that Lemma 2 provides asymptotically holomorphic sections srefk;x of Lk

which have Gaussian decay away from x and remain larger than a constant cs over
Bgk(x; 1). Moreover, consider a local approximately holomorphic coordinate chart
(as given by Lemma 3) on a neighborhood of x, and call z1k and z

2
k the two complex

coordinate functions. De�ne the two 1-forms

�
1
k = @

�z1ksrefk;x
s
0
k

�
and �

2
k = @

�z2ksrefk;x
s
0
k

�
;

and notice that at x they are both of norm larger than a �xed constant (which can
be expressed as a function of cs and the uniform C

0 bound on sk), and mutually

orthogonal. Moreover �1
k, �

2
k and their derivatives are uniformly bounded because of



42 III. SYMPLECTIC 4-MANIFOLDS AS BRANCHED COVERINGS OF CP
2

the bounds on srefk;x, on s
0
k and on the coordinate map ; these bounds are independent

of k. Finally, �1
k and �

2
k are asymptotically holomorphic because all the ingredients

in their de�nition are asymptotically holomorphic and js0kj is bounded from below.
If follows that, for some constant r0, one can express @hk on the ball Bgk(x; r

0) as
(@h1k; @h

2
k) = (u11k �

1
k+u

12
k �

2
k; u

21
k �

1
k+u

22
k �

2
k), thus de�ning a function uk on Bgk(x; r

0)
with values in C 4 . The properties of �ik described above imply that the ratio between
j@hkj and jukj is bounded between two constants which do not depend on k (because
of the bounds on �1

k and �
2
k, and of their orthogonality at x), and that the map uk

is asymptotically holomorphic (because of the asymptotic holomorphicity of �ik).
Next, one uses the local approximately holomorphic coordinate chart to obtain

from uk, after composing with a �xed dilation of C 2 if necessary, functions vk
de�ned on the ball B+ � C 2 , with values in C 4 , and satisfying the estimates jvkj =
O(1), j�@vkj = O(k�1=2) and jr�@vkj = O(k�1=2). Let C0 be a constant larger than

jziks
ref
k;xjC3;gk, and let � = Æ

4C0
: log(( Æ

4C0
)�1)�p. Then, by Proposition 2, for all large

enough k there exist constants wk = (w11
k ; w

12
k ; w

21
k ; w

22
k ) 2 C 4 , with jwkj �

Æ
4C0

,

such that jvk � wkj � � over the unit ball in C 2 .
Equivalently, one has juk � wkj � � over Bgk(x; c) for some constant c. Multi-

plying by �ik, one therefore gets that, over Bgk(x; c),�����
 
@

�
h
1
k � w

11
k

z
1
ks

ref
k;x

s0k

� w
12
k

z
2
ks

ref
k;x

s0k

�
; @

�
h
2
k � w

21
k

z
1
ks

ref
k;x

s0k

� w
22
k

z
2
ks

ref
k;x

s0k

�!����� � �

C

where C is a �xed constant determined by the bounds on �ik. In other terms, letting

(� 0k;x; �
1
k;x; �

2
k;x) = (0;�(w11

k z
1
k + w

12
k z

2
k)s

ref
k;x;�(w

21
k z

1
k + w

22
k z

2
k)s

ref
k;x);

and de�ning ~hk similarly to hk starting with sk + �k;x instead of sk, the above

formula can be rewritten as j@~hkj �
�
C
. Therefore, one has managed to make j@~hkj

larger than � = �
C
over Bgk(x; c) by adding to sk the perturbation �k;x. Moreover,

j�k;xj �
P
jwij

k j:jz
i
ks

ref
k;xj � Æ, and the sections ziks

ref
k;x have uniform Gaussian decay

away from x.

As remarked above, setting ~fk = P(sk + �k;x), the bound j@~hkj � � implies

that j@ ~fkj is larger than some �0 di�ering from � by at most a constant factor. The
assumptions of Proposition 3 are therefore satis�ed, since one has �0 � c

0
Æ log(Æ�1)�p

for a suitable constant c0 > 0. Moreover, the whole argument also applies to one-
parameter families of sections st;k as well (considering one-parameter families of

coordinate charts, reference sections sreft;k;x, and constants wt;k). So Proposition 3

applies. This ends the proof of Proposition 4.

2.3. Proof of Proposition 2. The proof of Proposition 2 goes along the same
lines as that of the local transversality result introduced in [D1] and extended to

one-parameter families in [A1] (see Proposition 6 below). To start with, notice
that it is su�cient to prove the result in the case where m = n + 1. Indeed, given
a map f = (f 1

; : : : ; f
m) : B+ ! C m with m > n + 1 satisfying the hypotheses

of Proposition 2, one can de�ne f 0 = (f 1
; : : : ; f

n+1) : B+ ! C n+1 , and notice
that f 0 also satis�es the required bounds. Therefore, if it is possible to �nd w0 =
(w1

; : : : ; w
n+1) 2 C n+1 of norm at most Æ such that jf 0�w

0j � � over the unit ball
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B, then setting w = (w1
; : : : ; w

n+1
; 0; : : : ; 0) 2 C m one gets jwj = jw0j � Æ and

jf � wj � jf 0 � w
0j � � at all points of B, which is the desired result. The same

argument applies to one-parameter families (ft)t2[0;1].
So we are now reduced to the case m = n + 1. Let us start with the case of a

single map f , before moving on to the case of one-parameter families. The �rst step
in the proof is to replace f by a complex polynomial g approximating f . For this,
one approximates each of the n+1 components f i by a polynomial gi, in such a way
that g di�ers from f by at most a �xed multiple of � over the unit ball B and that

the degree d of g is less than a constant times log(��1). The process is the same as
the one described in [D1] for asymptotically holomorphic maps to C , so we skip the
details. To obtain polynomial functions, one �rst constructs holomorphic functions
~f i di�ering from f

i by at most a �xed multiple of �, using the given bounds on �@f i.
The polynomials gi are then obtained by truncating the Taylor series expansion of
~f i to a given degree. It can be shown that by this method one can obtain polynomial

functions gi of degree less than a constant times log(��1) and di�ering from ~f i by
at most a constant times � (see Lemmas 27 and 28 of [D1]). The approximation
process does not hold on the whole ball where f is de�ned ; this is why one needs
f to be de�ned on B+ to get a result over the slightly smaller ball B.

Therefore, we now have a polynomial map g of degree d = O(log(��1)) such
that jf � gj � c � for some constant c. In particular, if one �nds w 2 C n+1 with
jwj � Æ such that jg�wj � (c+1)� over the ball B, then it follows immediately that
jf �wj � � everywhere, which is the desired result. The key observation for �nding
such a w is that the image g(B) � C n+1 is contained in an algebraic hypersurface H

in C n+1 of degree at most D = (n+1)dn. Indeed, if such were not the case, then for
every nonzero polynomial P of degree at most D in n+1 variables, P (g1; : : : ; gn+1)
would be a non identically zero polynomial function of degree at most dD in n

variables ; since the space of polynomials of degree at most D in n + 1 variables

is of dimension
�
D+n+1

n+1

�
while the space of polynomials of degree at most dD in n

variables is of dimension
�
dD+n

n

�
, the injectivity of the map P 7! P (g1; : : : ; gn+1)

from the �rst space to the second would imply that
�
D+n+1

n+1

�
�
�
dD+n

n

�
. However

since D = (n+ 1)dn one has�
D+n+1

n+1

�
�
dD+n

n

� =
(n+ 1)dn + (n+ 1)

n+ 1
�
D + n

dD + n
� � �

D + 1

dD + 1
� (dn + 1) �

�
1

d

�n

> 1;

which gives a contradiction. So g(B) � H for a certain hypersurface H � C n+1 of
degree at most D = (n + 1)dn. Therefore the following classical result of algebraic

geometry (see e.g. [Gri], pp. 11�15) can be used to provide control on the size of
H inside any ball in C n+1 :

Lemma 4. Let H � C n+1 be a complex algebraic hypersurface of degree D.
Then, given any r > 0 and any x 2 C n+1 , the 2n-dimensional volume of H \
B(x; r) is at most DV0 r

2n, where V0 is the volume of the unit ball of dimension 2n.
Moreover, if x 2 H, then one also has vol2n(H \ B(x; r)) � V0 r

2n.

In particular, we are interested in the intersection of H with the ball B̂ of radius

Æ centered at the origin. Lemma 4 implies that the volume of this intersection is
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bounded by (n + 1)V0 d
n
Æ
2n. Cover B̂ by a �nite number of balls B(xi; �), in such

a way that no point is contained in more than a �xed constant number (depending

only on n) of the balls B(xi; 2�). Then, for every i such that B(xi; �) \H is non-
empty, B(xi; 2�) contains a ball of radius � centered at a point of H, so by Lemma
4 the volume of B(xi; 2�) \ H is at least V0 �

2n. Summing the volumes of these

intersections and comparing with the total volume of H \ B̂, one gets that the
number of balls B(xi; �) which meet H is bounded by N = Cd

n
Æ
2n
�
�2n, where C

is a constant depending only on n. Therefore, H \ B̂ is contained in the union of

N balls of radius �.

Since our goal is to �nd w 2 B̂ at distance more than (c + 1)� of g(B) � H,
the set Z of values which we want to avoid is contained in a set Z+ which is the
union of N = Cd

n
Æ
2n
�
�2n balls of radius (c + 2)�. The volume of Z+ is bounded

by C 0
d
n
Æ
2n
�
2 for some constant C 0 depending only on n. Therefore, there exists a

constant C 00 such that, if one assumes Æ to be larger than C 00
d
n=2
�, the volume of

B̂ is strictly larger than that of Z+, and so B̂ � Z
+ is not empty. Calling w any

element of B̂ � Z
+, one has jwj � Æ, and jg � wj � (c + 1)� at every point of B,

and therefore jf � wj � � at every point of B, which is the desired result.
Since d is bounded by a constant times log(��1), it is not hard to see that there

exists an integer p such that, for all 0 < Æ <
1
2
, the relation � = Æ log(Æ�1)�p implies

that Æ > C
00
d
n=2
�. This is the value of p which we choose in the statement of the

proposition, thus ensuring that B̂�Z+ is not empty and therefore that there exists
w with jwj � Æ such that jf � wj � � at every point of B.

We now consider the case of a one-parameter family of functions (ft)t2[0;1]. The
�rst part of the above argument also applies to this case, so there exist polynomial
maps gt of degree d = O(log(��1)), depending continuously on t, such that jft�gtj �
c � for some constant c and for all t. In particular, if one �nds wt 2 C n+1 with
jwtj � Æ and depending continuously on t such that jgt�wtj � (c+1)� over the ball
B, then it follows immediately that jft � wtj � � everywhere, which is the desired
result.

As before, gt(B) is contained in a hypersurface of degree at most (n + 1)dn in
C n+1 , and the same argument as above implies that the set Zt of values which we

want to avoid for wt (i.e. all the points of B̂ at distance less than (c + 1)� from

gt(B)) is contained in a set Z+
t which is the union of N = Cd

n
Æ
2n
�
�2n balls of radius

(c+2)�. The rest of the proof is now a higher-dimensional analogue of the argument

used in [A1] : the crucial point is to show that, if Æ is large enough, B̂ � Z
+
t splits

into several small connected components and only one large component, because the
boundary Yt = @Z

+
t is much smaller than a (2n+ 1)-ball of radius Æ and therefore

cannot split B̂ into components of comparable sizes.

Each component of B̂ � Z
+
t is delimited by a subset of the sphere @B̂ and by a

union of components of Yt. Each component Yt;i of Yt is a real hypersurface in B̂

(with corners at the points where the boundaries of the various balls of Z+
t intersect)

whose boundary is contained in @B̂, and therefore splits B̂ into two components

C
0
i and C

00
i . So each component of B̂ � Z

+
t is an intersection of components C 0

i or
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C
00
i where i ranges over a certain subset of the set of components of Yt. Let us now

state the following isoperimetric inequality :

Lemma 5. Let Y be a connected (singular) submanifold of real codimension 1
in the unit ball of dimension 2n + 2, with (possibly empty) boundary contained in
the boundary of the ball. Let A be the (2n + 1)-dimensional area of Y . Then the
volume V of the smallest of the two components delimited by Y in the ball satis�es
the bound V � K A

(2n+2)=(2n+1), where K is a �xed constant depending only on the
dimension.

Proof. The stereographic projection maps the unit ball quasi-isometrically
onto a half-sphere. Therefore, up to a change in the constant, it is su�cient to
prove the result on the half-sphere. By doubling Y along its intersection with the
boundary of the half-sphere, which doubles both the volume delimited by Y and

its area, one reduces to the case of a closed connected (singular) real hypersurface
in the sphere S2n+2 (if Y does not meet the boundary, then it is not necessary to
consider the double). Next, one notices that the singular hypersurfaces we consider
can be smoothed in such a way that the area of Y and the volume it delimits are

changed by less than any �xed constant ; therefore, Lemma 5 follows from the
classical spherical isoperimetric inequality (see e.g. [Sch]).

It follows that, letting Ai be the (2n + 1)-dimensional area of Yt;i, the smallest

of the two components delimited by Yt;i, e.g. C
0
i, has volume Vi � K A

(2n+2)=(2n+1)
i .

Therefore, the volume of the set
S
iC

0
i is bounded by K

P
iA

(2n+2)=(2n+1)
i , which is

less than K (
P

iAi)
(2n+2)=(2n+1). However,

P
iAi is the total area of the boundary

Yt of Z
+
t , so it is less than the total area of the boundaries of the balls composing

Z
+
t , which is at most a �xed constant times CdnÆ2n��2n((c+ 2)�)2n+1, i.e. at most

a �xed constant times dnÆ2n�. Therefore, one has

vol(
[
i

C
0
i) � K

0
�
d
n�

Æ

� 2n+2

2n+1

Æ
2n+2

for some constant K 0 depending only on n. So there exists a constant K 00 depending

only on n such that, if Æ > K
00
d
n
�, then vol(

S
iC

0
i) �

1
10
vol(B̂), and therefore

vol(
T
iC

00
i ) �

8
10
vol(B̂).

Since d is bounded by a constant times log(��1), it is not hard to see that there
exists an integer p such that, for all 0 < Æ <

1
2
, the relation � = Æ log(Æ�1)�p implies

that Æ > K
00
d
n
�. This is the value of p which we choose in the statement of the

proposition, thus ensuring that the above volume bounds on
S
iC

0
i and

T
iC

00
i hold.

Now, recall that every component of B̂�Z+
t is an intersection of sets C 0

i and C
00
i

for certain values of i. Therefore, every component of B̂�Z+
t either is contained inS

iC
0
i or contains

T
iC

00
i . However, because

S
iC

0
i is much smaller than the ball B̂,

one cannot have B̂ � Z
+
t �

S
iC

0
i. Therefore, there exists a component in B̂ � Z

+
t

containing
S
iC

00
i . Since its volume is at least 8

10
vol(B̂), this large component is

necessarily unique.
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Let U(t) be the connected component of B̂�Zt which contains the large compo-

nent of B̂�Z+
t : it is the only large component of B̂�Zt. We now follow the same

argument as in [A1]. Since gt(B) depends continuously on t, so does its (c + 1)�-

neighborhood Zt, and the set
S
tftg � Zt is therefore a closed subset of [0; 1]� B̂.

Let U�(t; �) be the set of all points of U(t) at distance more than � from Zt [ @B̂.
Then, given any t and any small � > 0, for all � close to t, U(�) contains U�(t; �).
To see this, we �rst notice that, for all � close to t, U�(t; �) \ Z� = ;. Indeed,
if such were not the case, one could take a sequence of points of Z� \ U

�(t; �) for

� ! t, and extract a convergent subsequence whose limit belongs to U
�
(t; �) and

therefore lies outside of Zt, in contradiction with the fact that
S
tftg�Zt is closed.

So U�(t; �) � B̂ � Z� for all � close enough to t. Making � smaller if necessary,
one may assume that U�(t; �) is connected, so that for all � close to t, U�(t; �) is

necessarily contained in the large component of B̂ � Z� , namely U(�).

It follows that U =
S
tftg � U(t) is an open connected subset of [0; 1]� B̂, and

is therefore path-connected. So we get a path s 7! (t(s); w(s)) joining (0; w(0)) to
(1; w(1)) inside U , for any given w(0) and w(1) in U(0) and U(1). We then only
have to make sure that s 7! t(s) is strictly increasing in order to de�ne wt(s) = w(s).

Getting the t component to increase strictly is not hard. Indeed, one �rst gets

it to be weakly increasing, by considering values s1 < s2 of the parameter such that
t(s1) = t(s2) = t and replacing the portion of the path between s1 and s2 by a path
joining w(s1) to w(s2) in the connected set U(t). Then, we slightly shift the path,
using the fact that U is open, to get the t component to increase slightly over the
parts where it was constant. Thus we can de�ne wt(s) = w(s) and end the proof of

Proposition 2.

3. Transversality of derivatives

3.1. Transversality to 0 of Jac(fk). At this point in the proofs of Theorems
1 and 2, we have constructed for all large k asymptotically holomorphic sections

sk of C 3 
 L
k (or families of sections), bounded away from 0, and such that the

holomorphic derivative of the map fk = Psk is bounded away from 0. The next
property we wish to ensure by perturbing the sections sk is the transversality to 0
of the (2; 0)-Jacobian Jac(fk) = det(@fk). The main result of this section is :

Proposition 5. Let Æ and 
 be two constants such that 0 < Æ <



4
, and let

(sk)k�0 be asymptotically holomorphic sections of C 3 
 L
k such that jskj � 
 and

j@(Psk)jgk � 
 at every point of X. Then there exists a constant � > 0 such that,
for all large enough values of k, there exist asymptotically holomorphic sections �k
of C 3
Lk such that j�k�skjC3;gk � Æ and Jac(P�k) is �-transverse to 0. Moreover,
the same statement holds for families of sections indexed by a parameter t 2 [0; 1].

The proof of Proposition 5 uses once more the same techniques and globaliza-
tion argument as Propositions 1 and 4. The local transversality result one uses in
conjunction with Proposition 3 is now the following statement for complex valued

functions :
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Proposition 6 ([D1],[A1]). Let f be a function de�ned over the ball B+ of
radius 11

10
in C n with values in C . Let Æ be a constant such that 0 < Æ <

1
2
, and let

� = Æ log(Æ�1)�p where p is a suitable �xed integer depending only on the dimension
n. Assume that f satis�es the following bounds over B+ :

jf j � 1; j�@f j � �; jr�@f j � �:

Then there exists w 2 C , with jwj � Æ, such that f � w is �-transverse to 0 over
the interior ball B of radius 1, i.e. f � w has derivative larger than � at any point
of B where jf � wj < �.

Moreover, the same statement remains true for a one-parameter family of func-
tions (ft)t2[0;1] satisfying the same bounds, i.e. for all t one can �nd elements wt 2 C

depending continuously on t such that jwtj � Æ and ft�wt is �-transverse to 0 over
B.

The �rst part of this statement is exactly Theorem 20 of [D1], and the version
for one-parameter families is Proposition 3 of [A1].

Proposition 5 is proved by applying Proposition 3 to the following property : say
that a section s of C 3
Lk everywhere larger than 


2
and such that j@Psj � 


2
every-

where satis�es P(�; x) if Jac(Ps) is �-transverse to 0 at x, i.e. either jJac(Ps)(x)j � �

or jrJac(Ps)(x)j > �. This property is local and C2-open, and therefore also C3-
open, because the lower bound on s makes Jac(Ps) depend nicely on s. Note that,
since one considers only sections di�ering from sk by less than Æ in C3 norm, de-

creasing Æ if necessary, one can safely assume that the two hypotheses jsj � 


2
and

j@(Ps)j � 


2
are satis�ed everywhere by all the sections appearing in the construc-

tion of �k. So one only needs to check that the assumptions of Proposition 3 hold

for the property P de�ned above.

Therefore, let x 2 X, 0 < Æ <



4
, and consider asymptotically holomorphic

sections sk of C
3
Lk and the corresponding maps fk = Psk, such that jskj �




2
and

j@fkj �



2
everywhere. The setup is similar to that of Section 2.2. Without loss of

generality, composing with a rotation in C 3 (constant over X), one can assume that
sk(x) is directed along the �rst component in C 3 , i.e. that s1k(x) = s

2
k(x) = 0 and

therefore js0k(x)j �



2
. Because of the uniform bound on jrskj, there exists r > 0

(independent of k) such that js0kj �



3
, js1kj <




3
and js2kj <




3
over the ball Bgk(x; r).

Therefore, over this ball one can de�ne the map

hk(y) = (h1k(y); h
2
k(y)) =

�
s
1
k(y)

s0k(y)
;
s
2
k(y)

s0k(y)

�
:

Note that fk is the composition of hk with the map � : (z1; z2) 7! [1 : z1 : z2] from
C 2 to C P2, which is a quasi-isometry over the unit ball in C 2 . Therefore, at any point

y 2 Bgk(x; r), the bound j@fk(y)j �



2
implies that j@hk(y)j � 


0 for some constant



0
> 0. Moreover, the (2; 0)-Jacobians Jac(fk) = det(@fk) and Jac(hk) = det(@hk)

are related to each other : Jac(fk)(y) = �(y) Jac(hk)(y), where �(y) is the Jacobian
of � at hk(y). In particular, j�j is bounded between two universal constants over

Bgk(x; r), and r� is also bounded.
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Since rJac(hk) = �
�1rJac(fk)� �

�2Jac(fk)r�, it follows from the bounds on
� that, if Jac(fk) fails to be �-transverse to 0 at y for some �, i.e. if jJac(fk)(y)j < �

and jrJac(fk)(y)j � �, then jJac(hk)(y)j < C� and jrJac(hk)(y)j � C� for some

constant C independent of k and �. This means that, if Jac(hk) is C�-transverse
to 0 at y, then Jac(fk) is �-transverse to 0 at y. Therefore, what one actually
needs to prove is that, for large enough k, a perturbation of sk with Gaussian
decay and smaller than Æ allows one to obtain the �-transversality to 0 of Jac(hk)
over a ball Bgk(x; c), with � = c

0
Æ (log Æ�1)�p, for some constants c, c0 and p ; the

�

C
-transversality to 0 of Jac(fk) then follows by the above remark.

Since j@hk(x)j � 

0, one can assume, after composing with a rotation in C 2 (con-

stant over X) acting on the two components (s1k; s
2
k) or equivalently on (h1k; h

2
k),

that j@h2k(x)j �

0

2
. As in Section 2.2, consider the asymptotically holomorphic

sections srefk;x of Lk with Gaussian decay away from x given by Lemma 2, and the

complex coordinate functions z1k and z
2
k of a local approximately holomorphic Dar-

boux coordinate chart on a neighborhood of x. Recall that the two asymptotically
holomorphic 1-forms

�
1
k = @

�z1ksrefk;x
s0k

�
and �

2
k = @

�z2ksrefk;x
s0k

�
are, at x, both of norm larger than a �xed constant and mutually orthogonal, and
that �1

k, �
2
k and their derivatives are uniformly bounded independently of k.

Because �1
k(x) and �

2
k(x) de�ne an orthogonal frame in �1;0

T
�
xX, there exist

complex numbers ak and bk such that @h2k(x) = ak�
1
k(x) + bk�

2
k(x). Let �k;x =

(�bkz
1
k � �akz

2
k)s

ref
k;x. The properties of �k;x of importance to us are the following :

the sections �k;x are asymptotically holomorphic because the coordinates zik are
asymptotically holomorphic ; they are uniformly bounded in C3 norm by a constant

C0, because of the bounds on s
ref
k;x, on the coordinate chart and on @h

2
k(x) ; they

have uniform Gaussian decay away from x ; and, letting

�k;x = @

�
�k;x

s0k

�
^ @h2k;

one has j�k;x(x)j = j(�bk�
1
k(x) � �ak�

2
k(x)) ^ (ak�

1
k(x) + bk�

2
k(x))j � 


00 for some

constant 
00 > 0, because of the lower bounds on j�ik(x)j and j@h
2
k(x)j.

Because r�k;x is uniformly bounded and j�k;x(x)j � 

00, there exists a constant

r
0
> 0 independent of k such that j�k;xj remains larger than 
00

2
over the ball

Bgk(x; r
0). De�ne on Bgk(x; r

0) the function uk = ��1
k;xJac(hk) with values in C :

because �k;x is bounded from above and below and has bounded derivative, the
transversality to 0 of uk is equivalent to that of Jac(hk). Moreover, for any wk 2 C ,

adding wk�k;x to s
1
k is equivalent to adding wk�k;x to Jac(hk) = @h

1
k ^ @h

2
k, i.e.

adding wk to uk. Therefore, to prove Proposition 5 we only need to �nd wk 2 C

with jwkj �
Æ
C0

such that the functions uk � wk are transverse to 0.

Using the local approximately holomorphic coordinate chart, one can obtain
from uk, after composing with a �xed dilation of C 2 if necessary, functions vk de�ned

on the ball B+ � C 2 , with values in C , and satisfying the estimates jvkj = O(1),
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j�@vkj = O(k�1=2) and jr�@vkj = O(k�1=2). One can then apply Proposition 6,

provided that k is large enough, to obtain constants wk 2 C , with jwkj �
Æ
C0
, such

that vk�wk is �-transverse to 0 over the unit ball in C
2 , where � = Æ

C0
log(( Æ

C0
)�1)�p.

Therefore, uk �wk is
�
C0
-transverse to 0 over Bgk(x; c) for some constants c and C 0.

Multiplying by �k;x, one �nally gets that, over Bgk(x; c), Jac(hk) � wk�k;x is �-
transverse to 0, where � = �

C00
for some constant C 00.

In other terms, let (� 0k;x; �
1
k;x; �

2
k;x) = (0;�wk�k;x; 0), and de�ne ~hk similarly to hk

starting with sk + �k;x instead of sk : then the above discussion shows that Jac(~hk)
is �-transverse to 0 over Bgk(x; c). Moreover, j�k;xjC3 = jwkj j�k;xjC3 � Æ, and the
sections �k;x have uniform Gaussian decay away from x. As remarked above, the
�-transversality to 0 of Jac(~hk) implies that Jac(P(sk + �k;x)) is �0-transverse to

0 for some �0 di�ering from � by at most a constant factor. The assumptions of
Proposition 3 are therefore satis�ed, since �0 � c

0
Æ log(Æ�1)�p for a suitable constant

c
0
> 0.

Moreover, the whole argument also applies to one-parameter families of sections
st;k as well. The only nontrivial point to check, in order to apply the above con-
struction for each t 2 [0; 1] in such a way that everything depends continuously

on t, is the existence of a continuous family of rotations of C 2 acting on (h1k; h
2
k)

allowing one to assume that j@h2t;k(x)j >

0

2
for all t. For this, observe that, for every

t, such rotations in SU(2) are in one-to-one correspondence with pairs (�; �) 2 C 2

such that j�j2+ j�j2 = 1 and j� @h1t;k(x)+ � @h
2
t;k(x)j >


0

2
. The set �t of such pairs

(�; �) is non-empty because j@ht;k(x)j � 

0 ; let us now prove that it is connected.

First, notice that �t is invariant under the diagonal S
1 action on C 2 . Therefore,

it is su�cient to prove that the set of (� : �) 2 C P
1 such that

�(� : �) :=
j� @h1t;k(x) + � @h

2
t;k(x)j

2

j�j2 + j�j2
>

(
0)2

4

is connected. For this, consider a critical point of � over C P1. Composing with a
rotation in C P

1, one may assume that this critical point is (1 : 0). Then it follows

from the property @
@�
�(1 : �)j�=0 = 0 that @h1t;k(x) and @h

2
t;k(x) must necessarily be

orthogonal to each other. Therefore, one has

�(1 : �) =
j@h1t;k(x)j

2 + j�j2j@h2t;k(x)j
2

1 + j�j2
;

and it follows that either � is constant over C P
1 (if j@h1t;k(x)j = j@h2t;k(x)j), or

the critical point is nondegenerate of index 0 (if j@h1t;k(x)j < j@h2t;k(x)j), or it is

nondegenerate of index 2 (if j@h1t;k(x)j > j@h2t;k(x)j). As a consequence, since � has

no critical point of index 1, all nonempty sets of the form f(� : �) 2 C P
1
; �(�; �) >

constantg are connected.
Lifting back from C P

1 to the unit sphere in C 2 , it follows that �t is connected.
Therefore, for each t the open set �t � SU(2) of admissible rotations of C 2 is con-
nected. Since ht;k depends continuously on t, the sets �t also depend continuously
on t (with respect to nearly every conceivable topology), and therefore

S
tftg � �t

is connected. The same argument as in the end of �2.3 then implies the existence of
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a continuous section of
S
tftg��t over [0; 1], i.e. the existence of a continuous one-

parameter family of rotations of C 2 which allows one to ensure that j@h2t;k(x)j >

0

2

for all t. Therefore, the argument described in this section also applies to the case

of one-parameter families, and the assumptions of Proposition 3 are satis�ed by the
property P even in the case of one-parameter families of sections. Proposition 5
follows immediately.

3.2. Nondegeneracy of cusps. At this point in the proof, we have obtained

sections satisfying the transversality property P3(
). The only missing property in
order to obtain �-genericity for some � > 0 is the transversality to 0 of the restriction
of T (sk) to R(sk). The main result of this section is therefore the following :

Proposition 7. Let Æ and 
 be two constants such that 0 < Æ <



4
, and let

(sk)k�0 be asymptotically holomorphic sections of C 3
Lk satisfying P3(
) for all k.
Then there exists a constant � > 0 such that, for all large enough values of k, there
exist asymptotically holomorphic sections �k of C 3 
Lk such that j�k� skjC3;gk � Æ

and that the restrictions to R(�k) of the sections T (�k) are �-transverse to 0 over
R(�k). Moreover, the same statement holds for families of sections indexed by a
parameter t 2 [0; 1].

Note that, decreasing Æ if necessary in the statement of Proposition 7, it is safe
to assume that all sections lying within Æ of sk in C3 norm, and in particular the
sections �k, satisfy P3(




2
).

There are several ways of obtaining transversality to 0 of certain sections re-

stricted to asymptotically holomorphic symplectic submanifolds : for example, one
such technique is described in the main argument of [A1]. However in our case,
the perturbations we will add to sk in order to get the transversality to 0 of T (sk)
have the side e�ect of moving the submanifolds R(sk) along which the transversality

conditions have to hold, which makes things slightly more complicated. Therefore,
we choose to use the equivalence between two di�erent transversality properties :

Lemma 6. Let �k and �0k be asymptotically holomorphic sections of vector bun-
dles Ek and E 0

k respectively over X. Assume that �0k is 
-transverse to 0 over X
for some 
 > 0, and let �0k be its (smooth) zero set. Fix a constant r > 0 and a
point x 2 X. Then :

(1) There exists a constant c > 0, depending only on r, 
 and the bounds on the
sections, such that, if the restriction of �k to �0k \Bgk(x; r) is �-transverse to 0 for
some � < 
, then �k � �

0
k is c �-transverse to 0 at x as a section of Ek � E

0
k.

(2) If �k � �
0
k is �-transverse to 0 at x and x belongs to �0k, then the restriction

of �k to �0k is �-transverse to 0 at x.

Proof. We start with (1), whose proof follows the ideas of �3.6 of [A1] with
improved estimates. Let C1 be a constant bounding jr�kj everywhere, and let

C2 be a constant bounding jrr�kj and jrr�0kj everywhere. Fix two constants

0 < c < c
0
<

1
2
, such that the following inequalities hold : c < r, c < 1

2

 C

�1
1 ,

c
0
< (2 + 


�1
C1)

�1, and (2C2

�1 + 1)c < c

0. Clearly, these constants depend only

on r, 
, C1 and C2.
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Assume that j�k(x)j and j�
0
k(x)j are both smaller than c �. Because of the 
-

transversality to 0 of �0k and because j�0k(x)j < c � < 
, the covariant derivative of
�
0
k is surjective at x, and admits a right inverse (E 0

k)x ! TxX of norm less than



�1. Since the connection is unitary, applying this right inverse to �0k itself one

can follow the downward gradient �ow of j�0kj, and since one remains in the region
where j�0kj < 
 this gradient �ow converges to a point y where �0k vanishes, at a
distance d from the starting point x no larger than 
�1

c �. In particular, d < c < r,
so y 2 Bgk(x; r) \ �0k, and the restriction of �k to �0k is �-transverse to 0 at y.

Since c < 1
2

 C

�1
1 , the norm of �k(y) di�ers from that of �k(x) by at most

C1d <
�

2
, and so j�k(y)j < �. Since y 2 Bgk(x; r) \ �0k, we therefore know that

r�0k is surjective at y and vanishes in all directions tangential to �0k, while r�k
restricted to Ty�

0
k is surjective and larger than �. It follows that r(�k � �

0
k) is

surjective at y. Let � : (Ek)y ! Ty�
0
k and �

0 : (E 0
k)y ! TyX be the right inverses of

ry�kj�0

k
and ry�

0
k given by the transversality properties of �kj�0

k
and �0k. We now

construct a right inverse �̂ : (Ek�E
0
k)y ! TyX of ry(�k��

0
k) with bounded norm.

Considering any element u 2 (Ek)y, the vector û = �(u) 2 Ty�
0
k has norm at

most ��1juj and satis�es r�k(û) = u. Clearly r�0k(û) = 0 because û is tangent to
�0k, so we de�ne �̂(u) = û. Now consider an element v of (E 0

k)y, and let v̂ = �
0(v) : we

have jv̂j � 

�1jvj andr�0k(v̂) = v. Let ŵ = �(r�k(v̂)) : thenr�k(ŵ) = r�k(v̂) and

r�0k(ŵ) = 0, while jŵj � �
�1
C1jv̂j � �

�1


�1
C1jvj. Therefore r(�k��

0
k)(v̂�ŵ) = v,

and we de�ne �̂(v) = v̂ � ŵ.
Therefore r(�k � �

0
k) admits at y a right inverse �̂ of norm bounded by ��1 +



�1 + �

�1


�1
C1 � (2 + 


�1
C1)�

�1
< (c0�)�1. Finally, note that rx(�k � �

0
k) di�ers

from ry(�k��
0
k) by at most 2C2d < 2C2


�1
c � < (c0� c)�. Therefore, rx(�k��

0
k)

is also surjective, and is larger than (c0�)� ((c0�c)�) = c �. In other terms, we have
shown that �k � �

0
k is c �-transverse to 0 at x, which is what we sought to prove.

The proof of (2) is much easier : we know that x 2 �0k, i.e. �
0
k(x) = 0, and

let us assume that j�k(x)j < �. Then j�k(x) � �
0
k(x)j = j�k(x)j < �, and the �-

transversality to 0 of �k � �
0
k at x implies that rx(�k � �

0
k) has a right inverse �̂

of norm less than ��1. Choose any u 2 (Ek)x, and let �(u) = �̂(u � 0). One has
r�0k(�(u)) = 0, therefore �(u) lies in Tx�

0
k, and r�k(�(u)) = u by construction.

So (r�k)jTx�0

k
is surjective and admits � as a right inverse. Moreover, j�(u)j =

j�̂(u � 0)j � �
�1juj, so the norm of � is less than �

�1, which shows that �kj�0

k
is

�-transverse to 0 at x.

It follows from assertion (2) of Lemma 6 that, in order to obtain the transver-

sality to 0 of T (�k)jR(�k), it is su�cient to make T (�k)� Jac(P�k) transverse to 0
over a neighborhood of R(�k). Therefore, we can use once more the globalization
principle of Proposition 3 to prove Proposition 7. Indeed, consider a section s of
C 3 
 L

k satisfying P3(



2
), a point x 2 X and a constant � > 0, and say that s

satis�es the property P(�; x) if either x is at distance more than � of R(s), or x
lies close to R(s) and T (s)� Jac(Ps) is �-transverse to 0 at x (i.e. one of the two
quantities j(T (s)�Jac(Ps))(x)j and jr(T (s)�Jac(Ps))(x)j is larger than �). Since
Jac(Ps)�T (s) is, under the assumption P3(




2
), a smooth function of s and its �rst

two derivatives, and since R(s) depends nicely on s, it is easy to show that the
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property P is local and C3-open. So one only needs to check that P satis�es the
assumptions of Proposition 3. Our next remark is :

Lemma 7. There exists a constant r00 > 0 (independent of k) with the follow-
ing property : choose x 2 X and r

0
< r

0
0, and let sk be asymptotically holomor-

phic sections of C 3 
 L
k satisfying P3(




2
). Assume that Bgk(x; r

0) intersects R(sk).
Then there exists an approximately holomorphic map �k;x from the disc D+ of ra-

dius 11
10

in C to R(sk) such that : (i) the image by �k;x of the unit disc D con-

tains Bgk(x; r
0) \ R(sk) ; (ii) jr�k;xjC1;gk = O(1) and j�@�k;xjC1;gk = O(k�1=2) ;

(iii) �k;x(D
+) is contained in a ball of radius O(r0) centered at x.

Moreover the same statement holds for one-parameter families of sections :
given sections (st;k)t2[0;1] depending continuously on t, satisfying P3(




2
) and such

that Bgk(x; r
0) intersects R(st;k) for all t, there exist approximately Jt-holomorphic

maps �t;k;x depending continuously on t and with the same properties as above.

Proof. We work directly with the case of one-parameter families (the result for
isolated sections follows trivially) and let jt;k = Jac(Pst;k). First note that R(st;k)
is the zero set of jt;k, which is 


2
-transverse to 0 and has uniformly bounded second

derivative. So, given any point y 2 R(st;k), jrjt;k(y)j >



2
, and therefore there

exists c > 0, depending only on 
 and the bound on rrjt;k, such that rjt;k varies
by a factor of at most 1

10
in the ball of radius c centered at y. It follows that

Bgk(y; c) \ R(st;k) is di�eomorphic to a ball (in other words, R(st;k) is �trivial at
small scale�).

Assume �rst that 3r0 < c. For all t, choose a point yt;k (not necessarily depending

continuously on t) in Bgk(x; r
0)\R(st;k) 6= ;. The intersection Bgk(yt;k; 3r

0)\R(st;k)
is di�eomorphic to a ball and therefore connected, and contains Bgk(x; r

0)\R(st;k)
which is nonempty and depends continuously on t. Therefore, the set

S
tftg �

Bgk(yt;k; 3r
0) \ R(st;k) is connected, which implies the existence of points xt;k 2

Bgk(yt;k; 3r
0) \R(st;k) � Bgk(x; 4r

0) \R(st;k) which depend continuously on t.

Consider local approximately Jt-holomorphic coordinate charts over a neigh-
borhood of xt;k, depending continuously on t, as given by Lemma 3, and call
 t;k : (C 2

; 0) ! (X; xt;k) the inverse of the coordinate map. Because of asymp-

totic holomorphicity, the tangent space to R(st;k) at xt;k lies within O(k
�1=2) of the

complex subspace ~Txt;kR(st;k) = Ker @jt;k(xt;k) of Txt;kX. Composing  t;k with a

rotation in C 2 , one can get maps  0t;k satisfying the same bounds as  t;k and such

that the di�erential of  0t;k at 0 maps C � f0g to ~Txt;kR(st;k).

The estimates of Lemma 3 imply that there exists a constant � = O(r0) such

that  0t;k(BC2 (0; �)) � Bgk(x; r
0). De�ne ~ t;k(z) =  

0
t;k(�z) : if r0 is su�ciently

small, this map is well-de�ned over the ball BC 2 (0; 2). Over BC 2 (0; 2) the estimates

of Lemma 3 imply that j�@ ~ t;kjC1;gk = O(�k�1=2) and jr ~ t;kjC1;gk = O(�). Moreover,

because � = O(r0) the image by ~ t;k of BC2 (0; 2) is contained in a ball of radius
O(r0) around x.

Assuming r
0 to be su�ciently small, one can also require that the image of

BC2 (0; 2) by ~ t;k has diameter less than c. The submanifolds R(st;k) are then trivial

over the considered balls, so it follows from the implicit function theorem that
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R(st;k) \ ~ t;k(D
+ � D

+) can be parametrized in the chosen coordinates as the set

of points of the form ~ t;k(z; �t;k(z)) for z 2 D
+, where �t;k : D+ ! D

+ satis�es

�t;k(0) = 0 and r�t;k(0) = O(k�1=2).
The derivatives of �t;k can be easily computed, since they are characterized by

the equation jt;k( ~ t;k(z; �t;k(z))) = 0. Notice that, if r0 is small enough, it follows

from the transversality to 0 of jt;k that jrjt;k Æ d ~ t;k(v)j is larger than a constant

times �jvj for all v 2 f0g�C and at any point of D+�D+. Combining this estimate
with the bounds on the derivatives of jt;k given by asymptotic holomorphicity and

the above bounds on the derivatives of ~ t;k, one gets that jr�t;kjC1 = O(1) and

j�@�t;kjC1 = O(k�1=2) over D+.

One then de�nes �t;k(z) = ~ t;k(z; �t;k(z)) over D
+, which satis�es all the required

properties : the image �t;k(D
+) is contained in R(st;k) and in a ball of radius O(r0)

centered at x ; �t;k(D) contains the intersection of R(st;k) with ~ t;k(D � D
+) �

 
0
t;k(BC2 (0; �)) � Bgk(x; r

0) ; and the required bounds on derivatives follow directly

from those on derivatives of �t;k and ~ t;k. Therefore, Lemma 7 is proved under the
assumption that r0 is small enough. We set r00 in the statement of the lemma to
be the bound on r0 which ensures that all the assumptions we have made on r0 are
satis�ed.

We now prove that the assumptions of Proposition 3 hold for property P in the
case of single sections sk (the case of one-parameter families is discussed later). Let
x 2 X, 0 < Æ <




4
, and consider asymptotically holomorphic sections sk of C

3 
 L
k

satisfying P3(



2
) and the corresponding maps fk = Psk. We have to show that, for

large enough k, a perturbation of sk with Gaussian decay and smaller than Æ in C3

norm can make property P hold over a ball centered at x. Because of assertion (1)
of Lemma 6, it is actually su�cient to show that there exist constants c, c0 and p
independent of k and Æ such that, if x lies within distance c of R(sk), then sk can
be perturbed to make the restriction of T (sk) to R(sk) �-transverse to 0 over the

intersection of R(sk) with a ball Bgk(x; c), where � = c
0
Æ (log Æ�1)�p. Such a result

is then su�cient to imply the transversality to 0 of T (sk) � Jac(fk) over the ball
Bgk(x;

c
2
), with a transversality constant decreased by a bounded factor.

As in previous sections, composing with a rotation in C 3 (constant over X),
one can assume that sk(x) is directed along the �rst component in C 3 , i.e. that
s
1
k(x) = s

2
k(x) = 0 and therefore js0k(x)j �




2
. Because of the uniform bound on

jrskj, there exists r > 0 (independent of k) such that js0kj �



3
, js1kj <




3
and

js2kj <



3
over the ball Bgk(x; r). Therefore, over this ball one can de�ne the map

hk(y) = (h1k(y); h
2
k(y)) =

�
s
1
k(y)

s0k(y)
;
s
2
k(y)

s0k(y)

�
:

The map fk is the composition of hk with the map � : (z1; z2) 7! [1 : z1 : z2]
from C 2 to C P

2, which is a quasi-isometry over the unit ball in C 2 . Therefore, at
any point y 2 Bgk(x; r), the bound j@fk(y)j �




2
implies that j@hk(y)j � 


0 for some

constant 
0 > 0. Moreover, one has Jac(fk) = � Jac(hk), where �(y) is the Jacobian
of � at hk(y). In particular, Jac(hk) vanishes at exactly the same points of Bgk(x; r)
as Jac(fk). Since j�j is bounded between two universal constants over Bgk(x; r)
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and r� is bounded too, it follows from the 


2
-transversality to 0 of Jac(fk) that,

decreasing 
0 if necessary, Jac(hk) is 

0-transverse to 0 over Bgk(x; r).

Since j@hk(x)j � 

0, after composing with a rotation in C 2 (constant over X)

acting on the two components (s1k; s
2
k) one can assume that j@h2k(x)j �


0

2
. Since

rrhk is uniformly bounded, decreasing r if necessary one can ensure that j@h2kj

remains larger than 
0

4
at every point of Bgk(x; r).

Let us now show that, over R̂x(sk) = Bgk(x; r) \ R(sk), the transversality to 0

of T (sk) follows from that of T̂ (sk) = @h
2
k ^ @Jac(hk).

It follows from the identity Jac(fk) = � Jac(hk) and the vanishing of Jac(hk)

over R̂x(sk) that @Jac(fk) = � @Jac(hk) over R̂x(sk). Moreover the two (1; 0)-forms

@fk and @hk have complex rank one at any point of R̂x(sk) and are related by
@fk = d�(@hk), so they have the same kernel (in some sense they are �colinear�).

Because j@h2kj is bounded from below over Bgk(x; r), the ratio between j@hkj and
j@h2kj is bounded. Because the line bundle L(sk) on which one projects @fk coincides
with Im @fk over R(sk), we have j�(@fk)j = j@fkj over R(sk). Since � is a quasi-
isometry over the unit ball, it follows that the ratio between j�(@fk)j and j@h2kj

is bounded from above and below over R̂x(sk). Moreover, the two 1-forms �(@fk)

and @h
2
k have same kernel, so one can write �(@fk) =  @h

2
k over R̂x(sk), with  

bounded from above and below. Because of the uniform bounds on derivatives of sk
and therefore fk and hk, it is easy to check that the derivatives of  are bounded.

So T (sk) = � T̂ (sk) over R̂x(sk). Therefore, assume that T̂ (sk)jR(sk) is �-

transverse to 0 at a given point y 2 R̂x(sk), and let C > 1 be a constant such

that 1
C
< j� j < C and jr(� )j < C over R̂x(sk). If jT (sk)(y)j <

�

2C3 , then

jT̂ (sk)(y)j <
�

2C2 < �, and therefore j@(T̂ (sk))(y)j > �, so at y one has j@(T (sk))j �

j� @(T̂ (sk))j � jT̂ (sk)@(� )j >
1
C
� � �

2C2C = �

2C
>

�

2C3 . In other terms, the

restriction to R(sk) of T (sk) is
�

2C3 -transverse to 0 at y.
Therefore, we only need to show that there exists a constant c > 0 such that, if

Bgk(x; c)\R(sk) 6= ;, then by perturbing sk it is possible to ensure that T̂ (sk)jR(sk)
is transverse to 0 over Bgk(x; c) \ R(sk).

By Lemma 7, given any su�ciently small constant c > 0 and assuming that

Bgk(x; c) \ R(sk) 6= ;, there exists an approximately holomorphic map �k from
D

+ to R(sk) such that �k(D) contains Bgk(x; c) \ R(sk) and satisfying bounds

jr�kjC1;gk = O(1) and j�@�kjC1;gk = O(k�1=2). We call �c = O(c) the size of the ball
such that �k(D

+) � Bgk(x; �c), and assume that c is small enough to have �c < r.
From now on, we assume that Bgk(x; c) \ R(sk) 6= ;.
Let srefk;x be the asymptotically holomorphic sections of Lk with Gaussian decay

away from x given by Lemma 2, and let z1k and z
2
k be the complex coordinate

functions of a local approximately holomorphic Darboux coordinate chart on a
neighborhood of x. There exist two complex numbers a and b such that @h2k(x) =
a @z

1
k(x) + b @z

2
k(x). Composing the coordinate chart (z1k; z

2
k) with the rotation

1

jaj2 + jb2j

�
�b ��a
a b

�
;
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we can actually write @h2k(x) = � @z
2
k(x), with j�j bounded from below indepen-

dently of k and x. We now de�ne Qk;x =
�
0; (z1k)

2
s
ref
k;x; 0

�
and study the behavior of

T̂ (sk + wQk;x) for small w 2 C .

First we look at how adding wQk;x to sk a�ects the submanifold R(sk) : for
small enough w, R(sk + wQk;x) is a small deformation of R(sk) and can therefore

be seen as a section of TXjR(sk). Because the derivative of Jac(hk) is uniformly
bounded and Bgk(x; c) \ R(sk) is not empty, if c is small enough then jJac(hk)j
remains less than 


0 over Bgk(x; �c). Recall that Jac(hk) is 

0-transverse to 0 over

Bgk(x; r) : therefore, at every point y 2 Bgk(x; �c), rJac(hk) admits a right inverse

� : �2;0
T
�
yX ! TyX of norm less than 1


0
. Adding wQk;x to sk increases Jac(hk) by

w�k;x, where

�k;x = @

� (z1k)2srefk;x
s0k

�
^ @h2k:

Therefore, R(sk + wQk;x) is obtained by shifting R(sk) by an amount equal to

��(w�k;x) + O(jw�k;xj
2). It follows that the value of T̂ (sk + wQk;x) at a point of

R(sk + wQk;x) di�ers from the value of T̂ (sk) at the corresponding point of R(sk)
by an amount

�k;x(w) = w @h
2
k ^ @�k;x �r(T̂ (sk)):�(w�k;x) +O(w2):

Our aim is therefore to show that, if c is small enough, for a suitable value of w the

quantity T̂ (sk) + �k;x(w) is transverse to 0 over R(sk) \Bgk(x; c).

Notice that the quantities T̂ (sk) and Jac(hk) are asymptotically holomorphic,

so that r(T̂ (sk)) and � are approximately complex linear. Therefore,

r(T̂ (sk)):�(w�k;x) = wr(T̂ (sk)):�(�k;x) +O(k�1=2):

It follows that �k;x(w) = w�0
k;x +O(w2) +O(k�1=2), where

�0
k;x = @h

2
k ^ @�k;x �r(T̂ (sk)):�(�k;x):

We start by computing the value of �0
k;x at x, using the fact that @h2k(x) =

� @z
2
k(x) while z

1
k(x) = 0 and therefore �k;x(x) = 0. Because of the identity �k;x =

srefk;x

s0
k

2z1k@z
1
k ^ @h

2
k +O(jz1kj

2), an easy calculation yields that

@�k;x = 2
s
ref
k;x

s0k

(@z1k ^ @h
2
k) @z

1
k +O(jz1kj)

and therefore

�0
k;x(x) = �2�2

s
ref
k;x(x)

s
0
k(x)

�
@z

1
k(x) ^ @z

2
k(x)

�2
:

The important point is that there exists a constant 
00 > 0 independent of k and x
such that j�0

k;x(x)j � 

00.

Since the derivatives of�0
k;x are uniformly bounded, j�0

k;xj remains larger than 
00

2

at every point of Bgk(x; �c) if c is small enough. It follows that, over R(sk)\Bgk(x; c),

the transversality to 0 of T̂ (sk) + �k;x(w) is equivalent to that of the function
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(T̂ (sk) + �k;x(w))=�
0
k;x. The value of c we �nally choose to use in Lemma 7 for

the construction of �k is one small enough to ensure that all the above statements

hold (but still independent of k, x and Æ). Now de�ne, over the disc D+ � C , the
function

vk(z) =
T̂ (sk)(�k(z))

�0
k;x(�k(z))

with values in C . Because �0
k;x is bounded from below over Bgk(x; �c) and because of

the bounds on the derivatives of �k given by Lemma 7, the functions vk : D
+ ! C

satisfy the hypotheses of Proposition 6 for all large enough k. Therefore, if C0 is a
constant larger than jQk;xjC3;gk , and if k is large enough, there exists wk 2 C , with

jwkj �
Æ
C0
, such that vk + wk is �-transverse to 0 over the unit disc D in C , where

� = Æ
C0

log(( Æ
C0
)�1)�p.

Multiplying again by �0
k;x and recalling that �k maps di�eomorphically D to a

subset of R(sk) containing R(sk) \ Bgk(x; c), we get that the restriction to R(sk)

of T̂ (sk) + wk�
0
k;x is �0-transverse to 0 over R(sk) \ Bgk(x; c) for some �0 di�ering

from � by at most a constant factor. Recall that �k;x(wk) = wk�
0
k;x + O(jwkj

2) +

O(k�1=2), and note that jwkj
2 is at most of the order of Æ2, while �0 is of the order of

Æ log(Æ�1)�p : so, if Æ is small enough, one can assume that jwkj
2 is much smaller than

�
0. If k is large enough, k�1=2 is also much smaller than �0, so that T̂ (sk)+�k;x(wk)

di�ers from T̂ (sk) +wk�
0
k;x by less than �0

2
, and is therefore �0

2
-transverse to 0 over

R(sk) \Bgk(x; c).
Next, recall that R(sk + wkQk;x) is obtained by shifting R(sk) by an amount

��(wk�k;x)+O(jwk�k;xj
2) = O(jwkj) (because j�k;xj is uniformly bounded, or more

generally because the perturbation of sk is O(jwkj) in C
3 norm). So, if Æ is small

enough, one can safely assume that the distance by which one shifts the points of
R(sk) is less than

c
2
. Therefore, given any point in R(sk + wkQk;x) \Bgk(x;

c
2
), the

corresponding point in R(sk) belongs to Bgk(x; c).

We have seen above that the value of T̂ (sk+wkQk;x) at a point of R(sk+wkQk;x)

di�ers from the value of T̂ (sk) at the corresponding point of R(sk) by �k;x(wk) ;

therefore it follows from the transversality properties of T̂ (sk) + �k;x(wk) that

the restriction to R(sk + wkQk;x) of T̂ (sk + wkQk;x) is �00-transverse to 0 over
R(sk + wkQk;x) \ Bgk(x;

c
2
) for some �00 > 0 di�ering from �

0 by at most a con-
stant factor.

By the remarks above, this transversality property implies transversality to 0

of the restriction of T (sk +wkQk;x) over R(sk + wkQk;x) \Bgk(x;
c
2
) ; therefore, by

Lemma 6, T (sk+wkQk;x)� Jac(P(sk +wkQk;x)) is �-transverse to 0 over Bgk(x;
c
4
),

with a transversality constant � di�ering from �
00 by at most a constant factor. So,

if Æ is small enough and k large enough, in the case where Bgk(x; c)\R(sk) 6= ;, we
have constructed wk such that sk+wkQk;x satis�es the required property P(�; y) at
every point y 2 Bgk(x;

c
4
). By construction, jwkQk;xjC3;gk � Æ, the asymptotically

holomorphic sections Qk;x have uniform Gaussian decay away from x, and � is larger
than c0Æ log(Æ�1)�p for some constant c0 > 0, so all required properties hold in this

case.
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Moreover, in the case where Bgk(x; c) does not intersect R(sk), the section sk

already satis�es the property P(3
4
c; y) at every point y of Bgk(x;

c
4
) and no per-

turbation is necessary. Therefore, the property P under consideration satis�es the
hypotheses of Proposition 3 whether Bgk(x; c) intersects R(sk) or not. This ends

the proof of Proposition 7 for isolated sections sk.

In the case of one-parameter families of sections, the argument still works sim-

ilarly : we are now given sections st;k depending continuously on a parameter
t 2 [0; 1], and try to perform the same construction as above for each value of
t, in such a way that everything depends continuously on t. As previously, we have
to show that one can perturb st;k in order to ensure that, for all t such that x lies
in a neighborhood of R(st;k), T (st;k)jR(st;k) is transverse to 0 over the intersection

of R(st;k) with a ball centered at x.

As before, a continuous family of rotations of C 3 can be used to ensure that
s
1
t;k(x) and s

2
t;k(x) vanish for all t, allowing one to de�ne ht;k for all t. Moreover

the argument at the end of Section 3.1 proves the existence of a continuous one-
parameter family of rotations of C 2 acting on the two components (s1t;k; s

2
t;k) allowing

one to assume that j@h2t;k(x)j �

0

2
for all t. Therefore, as in the case of isolated

sections, the problem is reduced to that of perturbing st;k when x lies in a neigh-

borhood of R(st;k) in order to obtain the transversality to 0 of T̂ (st;k)jR(st;k) over
the intersection of R(st;k) with a ball centered at x.

Because Lemma 7 and Proposition 6 also apply in the case of 1-parameter fami-
lies of sections, the argument used above to obtain the expected transversality result

for isolated sections also works here for all t such that x lies in the neighborhood
of R(st;k). However, the ball Bgk(x; c) intersects R(st;k) only for certain values of
t 2 [0; 1], which makes it necessary to work more carefully.

De�ne 
k � [0; 1] as the set of all t for which Bgk(x; c)\R(st;k) 6= ;. For all large
enough k and for all t 2 
k, Lemma 7 allows one to de�ne maps �t;k : D

+ ! R(st;k)
depending continuously on t and with the same properties as in the case of isolated
sections. Using local coordinates zit;k depending continuously on t given by Lemma

3 and sections sreft;k;x given by Lemma 2, the quantities Qt;k;x, �t;k;x, �t;k;x(w), �
0
t;k;x

and vt;k can be de�ned for all t 2 
k by the same formulae as above and depend
continuously on t.

Proposition 6 then gives, for all large k and for all t 2 
k, complex numbers
wt;k of norm at most Æ

C0
and depending continuously on t, such that the functions

vt;k+wt;k are transverse to 0 over D. As in the case of isolated sections, this implies

that st;k + wt;kQt;k;x satis�es the required transversality property over Bgk(x;
c
4
).

Our problem is to de�ne asymptotically holomorphic sections �t;k;x of C 3 
 L
k

for all values of t 2 [0; 1], of C3-norm less than Æ and with Gaussian decay away
from x, in such a way that the sections st;k+ �t;k;x depend continuously on t 2 [0; 1]
and satisfy the property P over Bgk(x;

c
4
) for all t. For this, let � : R+ ! [0; 1] be

a continuous cut-o� function equal to 1 over [0; 3c
4
] and to 0 over [c;+1). De�ne,

for all t 2 
k,

�t;k;x = �
�
distgk(x;R(st;k))

�
wt;kQt;k;x;
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and �t;k;x = 0 for all t 62 
k. It is clear that, for all t 2 [0; 1], the sections �t;k;x
are asymptotically holomorphic, have Gaussian decay away from x, depend con-
tinuously on t and are smaller than Æ in C

3 norm. Moreover, for all t such that

distgk(x;R(st;k)) �
3c
4
, one has �t;k;x = wt;kQt;k;x, so the sections st;k + �t;k;x satisfy

property P over Bgk(x;
c
4
) for all such values of t.

For the remaining values of t, namely those such that x is at distance more than
3c
4
fromR(st;k), the argument is the following : since the perturbation �t;k;x is smaller

than Æ, every point of R(st;k+ �t;k;x) lies within distance O(Æ) of R(st;k). Therefore,
decreasing the maximum allowable value of Æ in Proposition 3 if necessary, one can
safely assume that this distance is less than c

4
. It follows that x is at distance more

than c
2
of R(st;k + �t;k;x), and so that the property P( c

4
; y) holds at every point

y 2 Bgk(x;
c
4
).

Therefore, for all large enough k and for all t 2 [0; 1], the perturbed sections

st;k+�t;k;x satisfy property P over the ball Bgk(x;
c
4
). It follows that the assumptions

of Proposition 3 also hold for P in the case of one-parameter families, and so
Proposition 7 is proved.

4. Dealing with the antiholomorphic part

4.1. Holomorphicity in the neighborhood of cusp points. At this point
in the proof, we have constructed asymptotically holomorphic sections of C 3 
 L

k

satisfying all the required transversality properties. We now need to show that, by

further perturbation, one can obtain �@-tameness. We �rst handle the case of cusp
points :

Proposition 8. Let (sk)k�0 be 
-generic asymptotically J-holomorphic sec-
tions of C 3
Lk. Then there exist constants (Cp)p2N and c > 0 such that, for all large

k, there exist !-compatible almost-complex structures ~Jk on X and asymptotically J-
holomorphic sections �k of C

3
Lk with the following properties : at any point whose

gk-distance to C ~Jk
(�k) is less than c, the almost-complex structure ~Jk is integrable

and the map P�k is ~Jk-holomorphic ; and for all p 2 N, j ~Jk�J jCp;gk � Cpk
�1=2 and

j�k � skjCp;gk � Cpk
�1=2.

Furthermore, the result also applies to 1-parameter families of 
-generic asymp-
totically Jt-holomorphic sections (st;k)t2[0;1];k�0 : for all large k there exist almost-

complex structures ~Jt;k and asymptotically Jt-holomorphic sections �t;k depending
continuously on t and such that the above properties hold for all values of t. More-
over, if s0;k and s1;k already satisfy the required properties, and if one assumes that,
for some � > 0, Jt and st;k are respectively equal to J0 and s0;k for all t 2 [0; �] and
to J1 and s1;k for all t 2 [1� �; 1], then it is possible to ensure that �0;k = s0;k and
�1;k = s1;k.

The proof of this result relies on the following analysis lemma, which states that

any approximately holomorphic complex-valued function de�ned over the ball B+

of radius 11
10

in C 2 can be approximated over the interior ball B of unit radius by a
holomorphic function :
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Lemma 8. There exist an operator P : C1(B+
; C ) ! C

1(B; C ) and constants

(Kp)p2N such that, given any function f 2 C
1(B+

; C ), the function ~f = P (f) is

holomorphic over the unit ball B and satis�es jf� ~f jCp(B) � Kp j�@f jCp(B+) for every
p 2 N.

Proof. (see also [D1]). This is a standard fact which can be proved e.g. using
the Hörmander theory of weighted L2 spaces. Using a suitable weighted L2 norm

on B
+ which compares uniformly with the standard norm on the interior ball B0

of radius 1 + 1
20

(B � B
0 � B

+), one obtains a bounded solution to the Cauchy-

Riemann equation : for any �@-closed (0; 1)-form � on B
+ there exists a function

T (�) such that �@T (�) = � and jT (�)jL2(B0) � Cj�jL2(B+) for some constant C.

Take � = �@f and let h = T (�) : since �@h = � = �@f , the function ~f = f � h is
holomorphic (in other words, we set P = Id�T �@). Moreover the L2 norm of h and

the Cp norm of �@h = �@f over B0 are bounded by multiples of j�@f jCp(B+) ; therefore,
by standard elliptic theory, the same is true for the Cp norm of h over the interior
ball B, which gives the desired result.

We �rst prove Proposition 8 in the case of isolated sections sk, where the argu-

ment is fairly easy. Because sk is 
-generic, the set of points of R(sk) where T (sk)
vanishes, i.e. CJ(sk), is �nite. Moreover rT (sk)jR(sk) is larger than 
 at all cusp
points and rrT (sk) is uniformly bounded, so there exists a constant r > 0 such
that the gk-distance between any two points of CJ(sk) is larger than 4r.

Let x be a point of CJ(sk), and consider a local approximately J-holomorphic
Darboux map  k : (C

2
; 0)! (X; x) as given by Lemma 3. Because of the bounds on

�@ k, the !-compatible almost-complex structure J 0k on the ball Bgk(x; 2r) de�ned
by pulling back the standard complex structure of C 2 satis�es bounds of the type

jJ 0k � J jCp;gk = O(k�1=2) over Bgk(x; 2r) for all p 2 N .
Recall that the set of !-skew-symmetric endomorphisms of square �1 of the

tangent bundle TX (i.e. !-compatible almost-complex structures) is a subbundle
of End(TX) whose �bers are contractible. Therefore, there exists a one-parameter
family (J�k )�2[0;1] of !-compatible almost-complex structures over Bgk(x; 2r) depend-

ing smoothly on � and such that J0
k = J and J1

k = J
0
k. Also, let �x : Bgk(x; 2r) !

[0; 1] be a smooth cut-o� function with bounded derivatives such that �x = 1 over
Bgk(x; r) and �x = 0 outside of Bgk(x;

3
2
r).

Then, de�ne ~Jk to be the almost-complex structure which equals J outside of the

2r-neighborhood of CJ(sk), and which at any point y of a ball Bgk(x; 2r) centered

at x 2 CJ(sk) coincides with J
�x(y)

k : it is quite easy to check that ~Jk is integrable

over the r-neighborhood of CJ(sk) where it coincides with J 0k, and satis�es bounds

of the type j ~Jk � J jCp;gk = O(k�1=2) 8p 2 N .

Let us now return to a neighborhood of x 2 CJ(sk), where we need to perturb

sk to make the corresponding projective map locally ~Jk-holomorphic. First notice

that, by composing with a rotation of C 3 (constant over X), one can safely assume
that s1k(x) = s

2
k(x) = 0. Therefore, js0k(x)j � 
, and decreasing r if necessary one

can assume that js0kj remains larger than 


2
at every point of Bgk(x; r). The ~Jk-

holomorphicity of Psk over a neighborhood of x is then equivalent to that of the
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map hk with values in C 2 de�ned by

hk(y) = (h1k(y); h
2
k(y)) =

�
s
1
k(y)

s0k(y)
;
s
2
k(y)

s0k(y)

�
:

Because of the properties of the map  k given by Lemma 3, there exist constants
� > 0 and r

0
> 0, independent of k, such that  k(BC2 (0;

11
10
�)) is contained in

Bgk(x; r) while  k(BC2 (0;
1
2
�)) contains Bgk(x; r

0). We now de�ne the two complex-

valued functions f 1
k (z) = h

1
k( k(�z)) and f

2
k (z) = h

2
k( k(�z)) over the ballB

+ � C 2 .

By de�nition of ~Jk, the map  k intertwines the almost-complex structure ~Jk over
Bgk(x; r) and the standard complex structure of C 2 , so our goal is to make the

functions f 1
k and f 2

k holomorphic in the usual sense over a ball in C 2 .

This is where we use Lemma 8. Remark that, because of the estimates on �@J k
given by Lemma 3 and those on �@Jhk coming from asymptotic holomorphicity, we
have j�@f ikjCp(B+) = O(k�1=2) for every p 2 N and i 2 f1; 2g. Therefore, by Lemma 8

there exist two holomorphic functions ~f 1
k and ~f 2

k , de�ned over the unit ball B � C 2 ,

such that jf ik �
~f ikjCp(B) = O(k�1=2) for every p 2 N and i 2 f1; 2g.

Let � : [0; 1] ! [0; 1] be a smooth cut-o� function such that � = 1 over [0; 1
2
]

and � = 0 over [3
4
; 1], and de�ne, for all z 2 B and i 2 f1; 2g, f̂ ik(z) = �(jzj) ~f ik(z) +

(1 � �(jzj))f ik(z). By construction, the functions f̂ ik are holomorphic over the ball

of radius 1
2
and di�er from f

i
k by O(k

�1=2).

Going back through the coordinate map, let ĥik be the functions on the neigh-

borhood Ux =  k(BC2 (0; �)) of x which satisfy ĥik( k(�z)) = f̂
i
k(z) for every z 2 B.

De�ne ŝ0k = s
0
k, ŝ

1
k = ĥ

1
ks

0
k and ŝ2k = ĥ

2
ks

0
k over Ux, and let �k be the global section

of C 3 
 L
k which 8x 2 CJ(sk) equals ŝk over Ux and which coincides with sk away

from CJ(sk).

Because f̂ ik = f
i
k near the boundary of B, ŝk coincides with sk near the boundary

of Ux, and �k is therefore a smooth section of C 3 
 L
k. For every p 2 N , it follows

from the bound jf̂ ik� f
i
kjCp(B) = O(k�1=2) that j�k� skjCp;gk = O(k�1=2). Moreover,

the functions f̂ ik are holomorphic over BC 2 (0;
1
2
) where they coincide with ~f ik, so the

functions ĥik are ~Jk-holomorphic over  k(BC2 (0;
1
2
�)) � Bgk(x; r

0), and it follows

that P�k is ~Jk-holomorphic over Bgk(x; r
0).

Therefore, the almost-complex structures ~Jk and the sections �k satisfy all the

required properties, except that the integrability of ~Jk and the holomorphicity of P�k
are proved to hold on the r0-neighborhood of CJ(sk) rather than on a neighborhood
of C ~Jk

(�k).

However, the Cp bounds j ~Jk�Jkj = O(k�1=2) and j�k�skj = O(k�1=2) imply that

jJac ~Jk
(P�k)� JacJ(Psk)j = O(k�1=2) and jT ~Jk

(�k)� TJ(sk)j = O(k�1=2). Therefore

it follows from the transversality properties of sk that the points of C ~Jk
(�k) lie

within gk-distance O(k
�1=2) of CJ(sk). In particular, if k is large enough, the r0

2
-

neighborhood of C ~Jk
(�k) is contained in the r0-neighborhood of CJ(sk), which ends

the proof of Proposition 8 in the case of isolated sections.
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In the case of one-parameter families of sections, the argument is similar. One
�rst notices that, because of 
-genericity, there exists r > 0 such that, for every
t 2 [0; 1], the set CJt(st;k) consists of �nitely many points, any two of which are mu-

tually distant of at least 4r. Therefore, the points of CJt(st;k) depend continuously
on t, and their number remains constant.

Consider a continuous family (xt)t2[0;1] of points of CJt(st;k) : Lemma 3 provides
approximately Jt-holomorphic Darboux maps  t;k depending continuously on t on
a neighborhood of xt. By pulling back the standard complex structure of C 2 , one

obtains integrable almost-complex structures J 0t;k over Bgk(xt; 2r), depending con-

tinuously on t and di�ering from Jt by O(k
�1=2). As previously, because the set of

!-compatible almost-complex structures is contractible, one can de�ne a continu-

ous family of almost-complex structures ~Jt;k on X by gluing together Jt with the
almost-complex structures J 0t;k de�ned over Bgk(xt; 2r), using a cut-o� function at

distance r from CJt(st;k). By construction, the almost-complex structures ~Jt;k are

integrable over the r-neighborhood of CJt(st;k), and j ~Jt;k � JtjCp;gk = O(k�1=2) for
all p 2 N .

Next, we perturb st;k near xt 2 CJt(st;k) in order to make the corresponding

projective map locally ~Jt;k-holomorphic. As before, composing with a rotation of
C 3 (constant over X and depending continuously on t) and decreasing r if necessary,
we can assume that s1t;k(xt) = s

2
t;k(xt) = 0 and therefore that js0t;kj remains larger

than 


2
over Bgk(xt; r). The ~Jt;k-holomorphicity of Pst;k over Bgk(xt; r) is then

equivalent to that of the map ht;k with values in C 2 de�ned as above.

As previously, there exist constants � and r0 such that  t;k(BC 2 (0;
11
10
�)) is con-

tained in Bgk(xt; r) and  t;k(BC2 (0;
1
2
�)) � Bgk(xt; r

0) ; once again, our goal is to

make the functions f it;k : B+ ! C de�ned by f it;k(z) = h
i
t;k( t;k(�z)) holomorphic

in the usual sense.

Because of the estimates on �@Jt t;k and
�@Jtht;k, we have j�@f

i
t;kjCp(B+) = O(k�1=2)

8p 2 N , so Lemma 8 provides holomorphic functions ~f it;k over B which di�er from f
i
t;k

by O(k�1=2). By the same cut-o� procedure as above, we can thus de�ne functions

f̂
i
t;k which are holomorphic over BC 2 (0;

1
2
) and coincide with f it;k near the boundary

of B. Going back through the coordinate maps, we de�ne as previously functions

ĥ
i
t;k and sections ŝt;k over the neighborhood Ut;xt =  t;k(BC2 (0; �)) of xt. Since ŝt;k

coincides with st;k near the boundary of Ut;xt, we can obtain smooth sections �t;k of

C 3 
Lk by gluing st;k together with the various sections ŝt;k de�ned near the points
of CJt(st;k).

As previously, the maps P�t;k are ~Jt;k-holomorphic over the r0-neighborhood of

CJt(st;k) and satisfy j�t;k� st;kjCp;gk = O(k�1=2) ; therefore the desired result follows

from the observation that, for large enough k, C ~Jt;k
(�t;k) lies within distance r0

2
of

CJt(st;k).

We now consider the special case where s0;k already satis�es the required con-

ditions, i.e. there exists an almost-complex structure �J0;k within O(k�1=2) of J0,

integrable near C �J0;k
(s0;k), and such that Ps0;k is �J0;k-holomorphic near C �J0;k

(s0;k).
Although this is actually not necessary for the result to hold, we also assume, as in
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the statement of Proposition 8, that st;k = s0;k and Jt = J0 for every t � �, for some
� > 0. We want to prove that one can take �0;k = s0;k in the above construction.

We �rst show that one can assume that ~J0;k coincides with �J0;k over a small

neighborhood of CJ0(s0;k). For this, remark that CJ0(s0;k) lies within O(k�1=2) of
C �J0;k

(s0;k), so there exists a constant Æ such that, for large enough k, �J0;k is integrable

and Ps0;k is �J0;k-holomorphic over the Æ-neighborhood of CJ0(s0;k).
Fix points (xt)t2[0;1] in CJt(st;k), and consider, for all t � �, the approximately

Jt-holomorphic Darboux coordinates (z1t;k; z
2
t;k) on a neighborhood of xt and the

inverse map  t;k given by Lemma 3 and which are used to de�ne the almost-complex

structures J 0t;k and
~Jt;k near xt. We want to show that one can extend the family  t;k

to all t 2 [0; 1] in such a way that the map  0;k is �J0;k-holomorphic. The hypothesis
that Jt and st;k are the same for all t 2 [0; �] makes things easier to handle because
J� = J0 and x� = x0.

Since �J0;k is integrable over Bgk(x0; Æ) and !-compatible, there exist local com-

plex Darboux coordinates Zk = (Z1
k ; Z

2
k) at x0 which are �J0;k-holomorphic. It

follows from the approximate J0-holomorphicity of the coordinates z�;k = (z1�;k; z
2
�;k)

and from the bound jJ0 � �J0;kj = O(k�1=2) that, composing with a linear endo-
morphism of C 2 if necessary, one can assume that the di�erentials at x0 of the two
coordinate maps, namely rx0z�;k and rx0Zk, lie within O(k

�1=2) of each other. For
all t 2 [0; �], �zt;k = t

�
z�;k + (1 � t

�
)Zk de�nes local coordinates on a neighborhood

of x0 ; however, for t 2 (0; �) this map fails to be symplectic by an amount which

is O(k�1=2). So we apply Moser's argument to �zt;k in order to get local Darboux
coordinates zt;k over a neighborhood of x0 which interpolate between Zk and z�;k

and which di�er from �zt;k by O(k
�1=2). It is easy to check that, if k is large enough,

then the coordinates zt;k are well-de�ned over the ball Bgk(xt; 2r). Since
�@J0Zk and

�@J0z�;k are O(k
�1=2), and because zt;k di�ers from �zt;k by O(k�1=2), the coordinates

de�ned by zt;k are approximately J0-holomorphic (in the sense of Lemma 3) for all
t 2 [0; �].

De�ning  t;k as the inverse of the map zt;k for every t 2 [0; �], it follows im-
mediately that the maps  t;k, which depend continuously on t, are approximately

Jt-holomorphic over a neighborhood of 0 for every t 2 [0; 1], and that  0;k is �J0;k-
holomorphic.

We can then de�ne J 0t;k as previously onBgk(xt; 2r), and notice that J
0
0;k coincides

with �J0;k. Therefore, the corresponding almost-complex structures ~Jt;k over X, in

addition to all the properties described previously, also satisfy the equality ~J0;k =
�J0;k over the r-neighborhood of CJ0(s0;k).

It follows that, constructing the sections �t;k from st;k as previously, we have

�0;k = s0;k. Indeed, since Ps0;k is already ~J0;k-holomorphic over the r-neighborhood

of CJ0(s0;k), we get that, in the above construction, h
1
0;k and h

2
0;k are

~J0;k-holomorphic,

and so f 1
0;k and f

2
0;k are holomorphic. Therefore, by de�nition of the operator P of

Lemma 8, we have ~f 1
0;k = f

1
0;k and

~f 2
0;k = f

2
0;k, which clearly implies that �0;k = s0;k.

The same argument applies near t = 1 to show that, if s1;k already satis�es the
expected properties and if Jt and st;k are the same for all t 2 [1 � �; 1], then one
can take �1;k = s1;k. This ends the proof of Proposition 8.
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4.2. Holomorphicity at generic branch points. Our last step in order
to obtain �@-tame sections is to ensure, by further perturbation, the vanishing of
�@ ~Jk

(Psk) over the kernel of @ ~Jk
(Psk) at every branch point.

Proposition 9. Let (sk)k�0 be 
-generic asymptotically J-holomorphic sec-
tions of C 3 
 L

k. Assume that there exist !-compatible almost-complex structures
~Jk such that j ~Jk � J jCp;gk = O(k�1=2) for all p 2 N and such that, for some

constant c > 0, fk = Psk is ~Jk-holomorphic over the c-neighborhood of C ~Jk
(sk).

Then, for all large k, there exist sections �k such that the following properties hold :
j�k�skjCp;gk = O(k�1=2) for all p 2 N ; �k coincides with sk over the

c
2
-neighborhood

of C ~Jk
(�k) = C ~Jk

(sk) ; and, at every point of R ~Jk
(�k), �@ ~Jk

(P�k) vanishes over the

kernel of @ ~Jk
(P�k).

Moreover, the same result holds for one-parameter families of asymptotically Jt-
holomorphic sections (st;k)t2[0;1];k�0 satisfying the above properties. Furthermore, if
s0;k and s1;k already satisfy the properties required of �0;k and �1;k, then one can
take �0;k = s0;k and �1;k = s1;k.

The role of the almost-complex structure J in the statement of this result may
seem ambiguous, as the sections sk are also asymptotically holomorphic and generic

with respect to the almost-complex structures ~Jk. The point is that, by requiring

that all the almost-complex structures ~Jk lie within O(k�1=2) of a �xed almost-
complex structure, one ensures the existence of uniform bounds on the geometry of
~Jk independently of k.

We now prove Proposition 9 in the case of isolated sections. In all the following,

we use the almost complex structure ~Jk implicitly. Consider a point x 2 R(sk)
at distance more than 3

4
c from C(sk), and let Kx be the one-dimensional complex

subspace Ker @fk(x) of TxX. Because x 62 C(sk), we have TxX = TxR(sk) � Kx.

Therefore, there exists a unique 1-form �x 2 T
�
xX 
Tfk(x)C P

2 such that the restric-

tion of �x to TxR(sk) is zero and the restriction of �x to Kx is equal to �@fk(x)jKx
.

Because the restriction of T (sk) to R(sk) is transverse to 0 and because x is at
distance more than 3

4
c from C(sk), the quantity jT (sk)(x)j is bounded from below

by a uniform constant, and therefore the angle between TxR(sk) and Kx is also

bounded from below. So there exists a constant C independent of k and x such
that j�xj � Ck

�1=2. Moreover, because �@fk vanishes over the c-neighborhood of
C(sk), the 1-form �x vanishes at all points x close to C(sk) ; therefore we can extend

� into a section of T �X
f �kT C P
2 over R(sk) which vanishes over the c-neighborhood

of C(sk), and which satis�es bounds of the type j�jCp;gk = O(k�1=2) for all p 2 N .
Next, use the exponential map of the metric g to identify a tubular neighborhood

of R(sk) with a neighborhood of the zero section in the normal bundle NR(sk).
Given Æ > 0 su�ciently small, we de�ne a section � of f �kT C P

2 over the Æ-tubular
neighborhood of R(sk) by the following identity : given any point x 2 R(sk) and
any vector � 2 NxR(sk) of norm less than Æ,

�(expx(�)) = �(j�j) �x(�);

where the �bers of f �kT C P
2 at x and at expx(�) are implicitly identi�ed using radial

parallel transport, and � : [0; Æ]! [0; 1] is a smooth cut-o� function equal to 1 over
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[0; 1
2
Æ] and 0 over [3

4
Æ; Æ]. Since � vanishes near the boundary of the chosen tubular

neighborhood, we can extend it into a smooth section over all of X which vanishes
at distance more than Æ from R(sk).

Decreasing Æ if necessary, we can assume that Æ <
c
2
: it then follows from

the vanishing of � over the c-neighborhood of C(sk) that � vanishes over the c
2
-

neighborhood of C(sk). Moreover, because j�jCp;gk = O(k�1=2) for all p 2 N and

because the cut-o� function � is smooth, � also satis�es bounds j�jCp;gk = O(k�1=2)
for all p 2 N .

Fix a point x 2 R(sk) : � is identically zero over R(sk) by construction, sor�(x)
vanishes over TxR(sk) ; and, because � � 1 near the origin and by de�nition of the

exponential map, r�(x)jNxR(sk) = �xjNxR(sk)
. Since TxR(sk) and NxR(sk) generate

TxX, we conclude that r�(x) = �x. In particular, restricting to Kx, we get that

r�(x)jKx = �xjKx
= �@fk(x)jKx. Equivalently, since Kx is a complex subspace of

TxX, we have �@�(x)jKx
= �@fk(x)jKx

and @�(x)jKx
= 0 = @fk(x)jKx

.

Recall that, for all x 2 X, the tangent space to C P2 at fk(x) = Psk(x) canoni-
cally identi�es with the space of complex linear maps from C sk (x) to (C sk (x))

? �
C 3 
 L

k
x. This allows us to de�ne �k(x) = sk(x)� �(x):sk(x).

It follows from the properties of � described above that �k coincides with sk over
the c

2
-neighborhood of C(sk) and that j�k�skjCp;gk = O(k�1=2) for all p 2 N . Because

of the transversality properties of sk, we get that the points of C(�k) lie within

distance O(k�1=2) of C(sk), and therefore if k is large enough that C(�k) = C(sk).

Let ~fk = P�k, and consider a point x 2 R(sk) : since �(x) = 0 and therefore
~fk(x) = fk(x), it is easy to check thatr ~fk(x) = rfk(x)�r�(x) in T

�
xX
Tfk(x)C P

2.

Therefore, setting Kx = Ker @fk(x) as above, we get that @ ~fk(x) = @fk(x)� @�(x)

and �@ ~fk(x) = �@fk(x) � �@�(x) both vanish over Kx. A �rst consequence is that

@ ~fk(x) also has rank one, i.e. x 2 R(�k) : therefore R(sk) � R(�k). However,

because �k di�ers from sk by O(k
�1=2), it follows from the transversality properties

of sk that, for large enough k, R(�k) is contained in a small neighborhood of R(sk),
and so R(�k) = R(sk).

Moreover, recall that at every point x of R(�k) = R(sk) one has �@ ~fk(x)jKx =

@ ~fk(x)jKx
= 0. Therefore �@ ~fk(x) vanishes over the kernel of @ ~fk(x), and so the

sections �k satisfy all the required properties.

To handle the case of one-parameter families, remark that the above construc-
tion consists of explicit formulae, so it is easy to check that �, � and �k depend

continuously on sk and ~Jk. Therefore, starting from one-parameter families st;k and
~Jt;k, the above construction yields for all t 2 [0; 1] sections �t;k which satisfy the

required properties and depend continuously on t.
Moreover, if s0;k already satis�es the required properties, i.e. �@f0;k(x)jKx vanishes

at any point x 2 R(s0;k), then the above de�nitions give � � 0, and therefore � � 0
and �0;k = s0;k ; similarly for t = 1, which ends the proof of Proposition 9.
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4.3. Proof of the main theorems. Assuming that Theorem 3 holds, The-
orems 1 and 2 follow directly from the results we have proved so far : combining
Propositions 1, 4, 5 and 7, one gets, for all large k, asymptotically holomorphic sec-

tions of C 3 
 L
k which are 
-generic for some constant 
 > 0 ; Propositions 8 and

9 imply that these sections can be made �@-tame by perturbing them by O(k�1=2)
(which preserves the genericity properties if k is large enough) ; and Theorem 3 im-
plies that the corresponding projective maps are then approximately holomorphic
singular branched coverings.

Let us now prove Theorem 4. We are given two sequences s0;k and s1;k of sections

of C 3
Lk which are asymptotically holomorphic, 
-generic and �@-tame with respect
to almost-complex structures J0 and J1, and want to show the existence of a one-
parameter family of almost-complex structures Jt interpolating between J0 and
J1 and of generic and �@-tame asymptotically Jt-holomorphic sections interpolating
between s0;k and s1;k.

One starts by de�ning sections st;k and compatible almost-complex structures Jt
interpolating between (s0;k; J0) and (s1;k; J1) in the following way : for t 2 [0; 2

7
], let

st;k = s0;k and Jt = J0 ; for t 2 [2
7
;
3
7
], let st;k = (3�7t)s0;k and Jt = J0 ; for t 2 [3

7
;
4
7
],

let st;k = 0 and take Jt to be a path of !-compatible almost-complex structures
from J0 to J1 (recall that the space of compatible almost-complex structures is
connected) ; for t 2 [4

7
;
5
7
], let st;k = (7t � 4)s1;k and Jt = J1 ; and for t 2 [5

7
; 1],

let st;k = s1;k and Jt = J1. Clearly, Jt and st;k depend continuously on t, and the
sections st;k are asymptotically Jt-holomorphic for all t 2 [0; 1].

Since 
-genericity is a local and C3-open property, there exists � > 0 such that
any section di�ering from s0;k by less than � in C3 norm is 


2
-generic, and similarly

for s1;k. Applying Propositions 1, 4, 5 and 7, we get for all large k asymptotically

Jt-holomorphic sections �t;k which are �-generic for some � > 0, and such that
j�t;k � st;kjC3;gk < � for all t 2 [0; 1].

We now set s0t;k = s0;k for t 2 [0; 1
7
] ; s0t;k = (2 � 7t)s0;k + (7t � 1)� 2

7
;k for

t 2 [1
7
;
2
7
] ; s0t;k = �t;k for t 2 [2

7
;
5
7
] ; s0t;k = (7t� 5)s1;k + (6� 7t)� 5

7
;k for t 2 [5

7
;
6
7
] ;

and s0t;k = s1;k for t 2 [6
7
; 1]. By construction, the sections s0t;k are asymptotically

Jt-holomorphic for all t 2 [0; 1] and depend continuously on t. Moreover, they

are 


2
-generic for t 2 [0; 2

7
] because s0t;k then lies within � in C3 norm of s0;k, and

similarly for t 2 [5
7
; 1] because s0t;k then lies within � in C3 norm of s1;k. They are

also �-generic for t 2 [2
7
;
5
7
] because s0t;k is then equal to �t;k. Therefore the sections

s
0
t;k are �

0-generic for all t 2 [0; 1], where �0 = min(�; 

2
).

Next, we apply Proposition 8 to the sections s0t;k : since s
0
0;k = s0;k and s

0
1;k = s1;k

are already �@-tame, and since the families s0t;k and Jt are constant over [0; 1
7
] and

[6
7
; 1], one can require of the sections s00t;k given by Proposition 8 that s

00
0;k = s

0
0;k = s0;k

and s
00
1;k = s

0
1;k = s1;k. Finally, we apply Proposition 9 to the sections s00t;k to

obtain sections �00t;k which simultaneously have genericity and �@-tameness properties.

Since s000;k and s001;k are already �@-tame, one can require that �000;k = s
00
0;k = s0;k and

�
00
1;k = s

00
1;k = s1;k. The sections �00t;k interpolating between s0;k and s1;k therefore

satisfy all the required properties, which ends the proof of Theorem 4.
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5. Generic tame maps and branched coverings

5.1. Structure near cusp points. In order to prove Theorem 3, we need to
check that, given any generic and �@-tame asymptotically holomorphic sections sk
of C 3 
 L

k, the corresponding maps fk = Psk : X ! C P
2 are, at any point of X,

locally approximately holomorphically modelled on one of the three model maps of
De�nition 2. We start with the case of the neighborhood of a cusp point.

Let x0 2 X be a cusp point of fk, i.e. an element of C ~Jk
(sk), where ~Jk is the

almost-complex structure involved in the de�nition of �@-tameness. By de�nition,
~Jk di�ers from J by O(k�1=2) and is integrable over a neighborhood of x0, and fk
is ~Jk-holomorphic over a neighborhood of x0. Therefore, choose ~Jk-holomorphic
local complex coordinates on X near x0, and local complex coordinates on C P

2

near fk(x0) : the map h corresponding to fk in these coordinate charts is, locally,

holomorphic. Because the coordinate map on X is within O(k�1=2) of being J-
holomorphic, we can restrict ourselves to the study of the holomorphic map h =
(h1; h2) de�ned over a neighborhood of 0 in C 2 with values in C 2 , which satis�es
transversality properties following from the genericity of sk. Our aim will be to show

that, composing h with holomorphic local di�eomorphisms of the source space C 2

or of the target space C 2 , we can get h to be of the form (z1; z2) 7! (z31 � z1z2; z2)
over a neighborhood of 0.

First, because j@fkj is bounded from below and x0 is a cusp point, the derivative
@h(0) does not vanish and has rank one. Therefore, composing with a rotation of

the target space C 2 if necessary, we can assume that its image is directed along the
second coordinate, i.e. Im (@h(0)) = f0g � C .

Calling Z1 and Z2 the two coordinates on the target space C 2 , it follows im-
mediately that the function z2 = h

�
Z2 over the source space has a non-vanishing

di�erential at 0, and can therefore be considered as a local coordinate function on
the source space. Choose z1 to be any linear function whose di�erential at the
origin is linearly independent with dz2(0), so that (z1; z2) de�ne holomorphic local
coordinates on a neighborhood of 0 in C 2 . In these coordinates, h is of the form

(z1; z2) 7! (h1(z1; z2); z2) where h1 is a holomorphic function such that h1(0) = 0
and @h1(0) = 0.

Next, notice that, because Jac(fk) vanishes transversely at x0, the quantity
Jac(h) = det(@h) = @h1=@z1 vanishes transversely at the origin, i.e.�

@
2
h1

@z21

(0);
@
2
h1

@z1@z2
(0)

�
6= (0; 0):

Moreover, an argument similar to that of Section 3.2 shows that locally, because we
have arranged for j@h2j to be bounded from below, the ratio between the quantities

T (sk) and T̂ = @h2 ^ @Jac(h) is bounded from above and below. In particular, the

fact that x0 2 C ~Jk
(sk) implies that the restriction of T̂ to the set of branch points

vanishes transversely at the origin.

In our case, T̂ = dz2^@(
@h1
@z1

) = �(@2h1=@z
2
1) dz1^dz2. Therefore, the vanishing

of T̂ (0) implies that @2h1=@z
2
1 (0) = 0. It follows that @2h1=@z1@z2 (0) must be non-

zero ; rescaling the coordinate z1 by a constant factor if necessary, this derivative
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can be assumed to be equal to �1. Therefore, the map h can be written as

h(z1; z2) = (�z1z2 + �z
2
2 +O(jzj3); z2)

= (�z1z2 + �z
2
2 + �z

3
1 + �z

2
1z2 + 
z1z

2
2 + Æz

3
2 +O(jzj4); z2)

where �, �, �, 
 and Æ are complex coe�cients.
We now consider the following coordinate changes : on the target space C 2 ,

de�ne  (Z1; Z2) = (Z1 � �Z
2
2 � ÆZ

3
2 ; Z2), and on the source space C 2 , de�ne

�(z1; z2) = (z1 + �z
2
1 + 
z1z2; z2). Clearly, these two maps are local di�eomor-

phisms near the origin. Therefore, one can replace h by  Æ h Æ �, which has the

e�ect of killing most terms of the above expansion : this allows us to consider that
h is of the form

h(z1; z2) = (�z1z2 + �z
3
1 +O(jzj4); z2):

Next, recall that the set of branch points is, in our local setting, the set of points

where Jac(h) = @h1=@z1 = �z2 + 3�z21 + O(jzj3) vanishes. Therefore, the tangent
direction to the set of branch points at the origin is the z1 axis, and the transverse

vanishing of T̂ at the origin implies that @
@z1
T̂ (0) 6= 0. Using the above formula for

T̂ , we conclude that @3h1=@z
3
1 6= 0, i.e. � 6= 0.

Rescaling the two coordinates z1 and Z1 by a constant factor, we can assume
that � is equal to 1. Therefore, we have used all the transversality properties of h
to show that, on a neighborhood of x0, it is of the form

h(z1; z2) = (�z1z2 + z
3
1 +O(jzj4); z2):

The uniform bounds and transversality estimates on sk can be used to show that all
the rescalings and transformations we have used are �nice�, i.e. they have bounded
derivatives and their inverses have bounded derivatives.

Our next task is to show that further coordinate changes can kill the higher
order terms still present in the expression of h. For this, we �rst prove the following
lemma :

Lemma 9. Let D be the space of holomorphic local di�eomorphisms of C 2 near
the origin, and let H be the space of holomorphic maps from a neighborhood of 0
in C 2 to a neighborhood of 0 in C 2 . Let h0 2 H be the map (x; y) 7! (x3 � xy; y).
Then the di�erential at the point (Id; Id) of the map F : D � D ! H de�ned by
F(�;	) = 	 Æ h0 Æ � is surjective.

Proof. Let � = (�1; �2) and  = ( 1;  2) be two tangent vectors to D at Id
(i.e. holomorphic functions over a neighborhood of 0 in C 2 with values in C 2). The
di�erential of F at (Id; Id) is given by

DF(Id;Id)(�;  )(x; y) =
d

dt jt=0

h
(Id + t ) Æ h0 Æ (Id + t�)(x; y)

i
=
�
 1(x

3 � xy; y) + (3x2 � y)�1(x; y)� x �2(x; y);  2(x
3 � xy; y) + �2(x; y)

�
:

Proving the surjectivity of DF at (Id; Id) is equivalent to checking that, given any

tangent vector (�1; �2) 2 Th0H (i.e. a holomorphic function over a neighborhood of
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0 in C 2 with values in C 2), there exist � and  such that DF(Id;Id)(�;  )(x; y) =
(�1(x; y); �2(x; y)). Projecting this equality on the second factor, one gets

 2(x
3 � xy; y) + �2(x; y) = �2(x; y);

which implies that �2(x; y) = �2(x; y)� 2(x
3�xy; y). Replacing �2 by its expression

in the �rst component, and setting �(x; y) = �1(x; y)+x �2(x; y), the equation which

we need to solve �nally rewrites as

 1(x
3 � xy; y) + x 2(x

3 � xy; y) + (3x2 � y)�1(x; y) = �(x; y);

where the parameter � can be any holomorphic function, and  1,  2 and �1 are the
unknown quantities.

Solving this equation is a priori di�cult, so in order to get an idea of the general

solution it is best to �rst work in the ring of formal power series in the two variables
x and y. Since the equation is linear, it is su�cient to �nd a solution when � is a
monomial of the form �(x; y) = x

p
y
q with (p; q) 2 N2 .

First note that, for �(x; y) = y
q (i.e. when p = 0), a trivial solution is given

by  1(x
3 � xy; y) = y

q,  2 = 0 and �1 = 0. Next, remark that, if there exists a

solution for a given �(x; y), then there also exists a solution for x �(x; y) : indeed, if

 1(x
3�xy; y)+x 2(x

3�xy; y)+(3x2�y)�1(x; y) = �(x; y), then setting ~ 1 =
1
3
y  2,

~ 2 =  1 and ~�1(x; y) = x �1(x; y) +
1
3
 2(x

3 � xy; y) one gets

~ 1(x
3 � xy; y) + x ~ 2(x

3 � xy; y) + (3x2 � y) ~�1(x; y) = x �(x; y):

Therefore, by induction on p, the equation has a solution for all monomials xpyq,

and by linearity there exists a formal solution for all power series �(x; y). A short
calculation gives the following explicit solution of the equation for �(x; y) = x

p
y
q :

if p = 2k is even,

 1(x
3 � xy; y) = 3�kyk+q;  2 = 0; �1(x; y) =

k�1X
j=0

3�(j+1)
y
j+q
x
2k�2�2j

;

and if p = 2k + 1 is odd,

 1 = 0;  2(x
3 � xy; y) = 3�kyk+q; �1(x; y) =

k�1X
j=0

3�(j+1)
y
j+q
x
2k�1�2j

:

In particular,  1 and  2 actually only depend on the second variable y.
The above formulae make it possible to compute a general solution for any

holomorphic �, given by the following expressions, where 
+ and 
� are by de�nition

the two square roots of 1
3
y (exchanging 
+ and 
� clearly does not a�ect the result) :

 1(x
3 � xy; y) = 1

2

�
�(
+; y) + �(
�; y)

�
;

 2(x
3 � xy; y) = 1

2
+

�
�(
+; y)� �(
�; y)

�
;

�1(x; y) =
1

6
+

�
�(x; y)� �(
+; y)

x� 
+
�
�(x; y)� �(
�; y)

x� 
�

�
:

Note that these functions are actually smooth, although they depend on 
�

which are not smooth functions of y, because the odd powers of 
� cancel each

other in the expressions. Similarly, one easily checks that, when y ! 0 or x! 
�,
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the vanishing of a term in the formula for �1 always makes up for the singularity
of the denominator, so that �1 is actually well-de�ned everywhere. Another way
to see these smoothness properties is to observe that, because these formulae are

simply a rewriting of the formal solution computed previously for power series, the
functions they de�ne admit power series expansions at the origin. Lemma 9 is
therefore proved.

Lemma 9 implies the desired result. Indeed, endow the space of holomorphic

maps from a neighborhoodD of 0 in C 2 to C 2 with a structure of Hilbert space given
by a suitable Sobolev norm, e.g. the L2

4 norm which is stronger than the C1 norm :
then, since the di�erential at (Id; Id) of F is a surjective continuous linear map, the
submersion theorem for Hilbert spaces implies the existence of a constant � > 0
with the property that, given any holomorphic function � such that j�jL2

4
(D) < �,

there exist holomorphic local di�eomorphisms � and 	 of C 2 near 0, L2
4-close to

the identity, such that 	 Æ h0 Æ � = h0 + �.
Recall that we are trying to remove the higher order terms from h(z1; z2) =

(z31 � z1z2 + �(z1; z2); z2), where �(z1; z2) = O(jzj4). There is no reason for the L2
4

norm of � to be smaller than � over the �xed domain D. However the required
bound can be achieved by rescaling all the coordinates : let � be a small positive
constant, and consider the di�eomorphisms �� : (z1; z2) 7! (�z1; �

2
z2) of the source

space and 	� : (Z1; Z2) 7! (��3
Z1; �

�2
Z2) of the target space. Then we have

	� Æ h0 Æ �� = h0, and 	� Æ h Æ ��(z1; z2) = (z31 � z1z2 + ~��(z1; z2); z2) where
~��(z1; z2) = �

�3
�(�z1; �

2
z2).

Let R be a constant such that D � B(0; R), and let Æ > 0 be a constant
such that Æ2(1 + R

2 + R
4 + R

6 + R
8) vol(D) < �

2. It follows from the bound

jr4~��(z1; z2)j � � jr4
�(�z1; �

2
z2)j that, if � is small enough, the fourth derivative

of ~�� remains smaller than Æ over D. Since ~�� and its �rst three derivatives vanish

at the origin, by integrating the bound jr4~��j < Æ one gets that j~��jL2
4
(D) < �.

Therefore, if � is small enough there exist local di�eomorphisms ~� and ~	 such that
~	Æh0 Æ ~� = 	� Æh Æ�� over the domain D. Equivalently, setting 	 = 	�1

� Æ ~	Æ	�

and � = �� Æ ~� Æ ��1
� , we have 	 Æ h0 Æ � = h over a small neighborhood of 0 in

C 2 , which is what we wanted to prove.
Moreover, because of the uniform transversality estimates and bounds on the

derivatives of sk, the derivatives of h are uniformly bounded. Therefore one can
choose the constant � to be independent of k and of the given point x0 2 C ~Jk

(sk) :
it follows that the neighborhood of x0 over which the map fk has been shown to be

O(k�1=2)-approximately holomorphically modelled on the map h0 can be assumed to
contain a ball of �xed radius (depending on the bounds and transversality estimates,
but independent of x0 and k).

5.2. Structure near generic branch points. We now consider a branch
point x0 2 R ~Jk

(sk), which we assume to be at distance more than a �xed constant

Æ from the set of cusp points C ~Jk
(sk). We want to show that, over a neighborhood

of x0, fk = Psk is approximately holomorphically modelled on the map (z1; z2) 7!
(z21 ; z2).



70 III. SYMPLECTIC 4-MANIFOLDS AS BRANCHED COVERINGS OF CP
2

From now on, we implicitly use the almost-complex structure ~Jk and write R
for the intersection of R ~Jk

(sk) with the ball Bgk(x0;
Æ
2
). First note that, since R

remains at distance more than Æ
2
from the cusp points, the tangent space to R

remains everywhere away from the kernel of @fk. Therefore, the restriction of fk
to R is a local di�eomorphism over a neighborhood of x0, and so fk(R) is locally
a smooth approximately holomorphic submanifold in C P

2. It follows that there

exist approximately holomorphic coordinates (Z1; Z2) on a neighborhood of fk(x0)
in C P

2 such that fk(R) is locally de�ned by the equation Z1 = 0.
De�ne the approximately holomorphic function z2 = f

�
kZ2 over a neighborhood

of x0, and notice that its di�erential dz2 = dZ2 Æ dfk does not vanish, because by

construction Z2 is a coordinate on fk(R). Therefore, z2 can be considered as a local
complex coordinate function on a neighborhood of x0. In particular, the level sets
of z2 are smooth and intersect R transversely at a single point.

Take z1 to be an approximately holomorphic function on a neighborhood of x0
which vanishes at x0 and whose di�erential at x0 is linearly independent with that
of z2 (e.g. take the two di�erentials to be mutually orthogonal), so that (z1; z2)
de�ne approximately holomorphic coordinates on a neighborhood of x0. From now
on we use the local coordinates (z1; z2) on X and (Z1; Z2) on C P

2.

Because dz2jTR remains away from 0, R has locally an equation of the form

z1 = �(z2) for some approximately holomorphic function � (satisfying �(0) = 0
since x0 2 R). Therefore, shifting the coordinates on X in order to replace z1 by
z1 � �(z2), one can assume that z1 = 0 is a local equation of R. In the chosen local

coordinates, fk is therefore modelled on an approximately holomorphic map h from
a neighborhood of 0 in C 2 with values in C 2 , of the form (z1; z2) 7! (h1(z1; z2); z2),
with the following properties.

First, because R = fz1 = 0g is mapped to fk(R) = fZ1 = 0g, we have h1(0; z2) =
0 for all z2. Next, recall that the di�erential of fk has real rank 2 at any point of

R (because @fk has complex rank 1 and �@fk vanishes over the kernel of @fk), so its
image is exactly the tangent space to fk(R). It follows that rh1 = 0 at every point
(0; z2) 2 R.

Finally, because the chosen coordinates are approximately holomorphic the

quantity Jac(fk) is within O(k
�1=2) of det(@h) = (@h1=@z1) @z1 ^ @z2. Therefore,

the transversality to 0 of Jac(fk) implies that (@2h1=@z
2
1 ; @

2
h1=@z1@z2) has a norm

which remains larger than a �xed constant along R. However @2h1=@z1@z2 vanishes
at any point of R because @h1=@z1 (0; z2) = 0 for all z2. Therefore the quantity

@
2
h1=@z

2
1 remains bounded away from 0 on R.

The above properties imply that h can be written as

h(z1; z2) =
�
�(z2)z

2
1 + �(z2)z1�z1 + 
(z2)�z

2
1 + �(z1; z2); z2

�
;

where � is approximately holomorphic and bounded away from 0, while � and

 are O(k�1=2) (because of asymptotic holomorphicity), and �(z1; z2) = O(jz1j

3)
is approximately holomorphic. Moreover, composing with the coordinate change
(Z1; Z2) 7! (�(Z2)

�1
Z1; Z2) (which is approximately holomorphic and has bounded

derivatives because � is bounded away from 0), one reduces to the case where � is

identically equal to 1.
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We now want to reduce further the problem by removing the � and 
 terms
in the above expression : for this, we �rst remark that, given any small enough
complex numbers � and 
, there exists a complex number �, of norm less than

j�j+ j
j and depending smoothly on � and 
, such that

� = �
��+
�

2
(1 + j�j2):

Indeed, if j�j + j
j < 1
2
the right hand side of this equation is a contracting map

of the unit disc to itself, so the existence of a solution � in the unit disc follows
immediately from the �xed point theorem. Furthermore, using the bound j�j < 1
in the right hand side, one gets that j�j < j�j+ j
j. Finally, the smooth dependence
of � upon � and 
 follows from the implicit function theorem.

Assuming again that j�j+ j
j < 1
2
and de�ning � as above, let

A =
1� ��2


1� j�j4
and B =


 � �
2

1� j�j4
:

The complex numbers A and B are also smooth functions of � and 
, and it is clear
that jA�1j = O(j�j+ j
j) and jBj = O(j�j+ j
j). Moreover, one easily checks that,

in the ring of polynomials in z and �z,

A(z + ��z)2 +B(�z + ��z)2 = z
2 + 2

�+ 
��

1 + j�j2
z�z + 
�z2 = z

2 + �z�z + 
�z2:

Therefore, if one assumes k to be large enough, recalling that the quantities �(z2)
and 
(z2) which appear in the above expression of h are bounded by O(k�1=2), there
exist �(z2), A(z2) and B(z2), depending smoothly on z2, such that jA(z2) � 1j =
O(k�1=2), jB(z2)j = O(k�1=2), j�(z2)j = O(k�1=2) and

A(z2)(z1 + �(z2)�z1)
2 +B(z2)(z1 + �(z2)�z1)

2 = z
2
1 + �(z2)z1�z1 + 
(z2)�z

2
1 :

So, let h0 be the map (z1; z2) 7! (z21 ; z2), and let � and 	 be the two approxi-
mately holomorphic local di�eomorphisms of C 2 de�ned by �(z1; z2) = (z1+�(z2)�z1;
z2) and 	(Z1; Z2) = (A(Z2)Z1 +B(Z2) �Z1; Z2) : then

h(z1; z2) = 	 Æ h0 Æ �(z1; z2) + (�(z1; z2); 0):

It follows immediately that 	�1 Æ h Æ ��1(z1; z2) = (z21 + O(jz1j
3); z2). Therefore,

this new coordinate change allows us to consider only the case where h is of the

form (z1; z2) 7! (z21 + ~�(z1; z2); z2), where ~�(z1; z2) = O(jz1j
3).

Because ~�(z1; z2) = O(jz1j
3), the bound j~�(z1; z2)j <

1
2
jz1j

2 holds over a neigh-
borhood of the origin whose size can be bounded from below independently of k
and x0 by using the uniform estimates on all derivatives. Over this neighborhood,
de�ne

�(z1; z2) = z1

s
1 +

~�(z1; z2)

z21

for z1 6= 0, where the square root is determined without ambiguity by the condition

that
p
1 = 1. Setting �(0; z2) = 0, it follows from the bound j�(z1; z2) � z1j =

O(jz1j
2) that the function � is C1. In general � is not C2, because ~� may contain

terms involving �z21z1 or �z
3
1 .
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Because �(z1; z2) = z1 + O(jz1j
2), the map � : (z1; z2) 7! (�(z1; z2); z2) is a

C
1 local di�eomorphism of C 2 over a neighborhood of the origin. As previously,

the uniform bounds on all derivatives imply that the size of this neighborhood can

be bounded from below independently of k and x0. Moreover, it follows from the
asymptotic holomorphicity of sk that ~� has antiholomorphic derivatives bounded
by O(k�1=2), and so j�@�j = O(k�1=2). Therefore � is O(k�1=2)-approximately holo-
morphic, and we have

h0 Æ�(z1; z2) = h(z1; z2);

which �nally gives the desired result.

5.3. Proof of Theorem 3. Theorem 3 follows readily from the above argu-
ments : indeed, consider 
-generic and �@-tame asymptotically holomorphic sections

sk of C
3
Lk, and let ~Jk be the almost-complex structures involved in the de�nition

of �@-tameness. We need to show that, at any point x 2 X, the maps fk = Psk are

approximately holomorphically modelled on one of the three maps of De�nition 2.
First consider the case where x lies close to a point y 2 C ~Jk

(sk). The argument
of Section 5.1 implies the existence of a constant Æ > 0 independent of k and y such

that, over the ballBgk(y; 2Æ), the map fk is ~Jk-holomorphicallymodelled on the cusp
covering map (z1; z2) 7! (z31 � z1z2; z2). If x lies within distance Æ of y, Bgk(y; 2Æ)
is a neighborhood of x ; therefore the expected result follows at every point within

distance Æ of C ~Jk
(sk) from the observation that, because j ~Jk � J j = O(k�1=2), the

relevant coordinate chart on X is O(k�1=2)-approximately J-holomorphic.

Next, consider the case where x lies close to a point y of R ~Jk
(sk) which is itself

at distance more than Æ from C ~Jk
(sk). The argument of Section 5.2 then implies

the existence of a constant Æ0 > 0 independent of k and y such that, over the ball
Bgk(y; 2Æ

0), the map fk is, in O(k�1=2)-approximately holomorphic C1 coordinate
charts, locally modelled on the branched covering map (z1; z2) 7! (z21 ; z2). Therefore,
if one assumes the distance between x and y to be less than Æ0, the given ball is a
neighborhood of x, and the expected result follows.

So we are left only with the case where x is at distance more than Æ0 fromR ~Jk
(sk).

Assuming k to be large enough, it then follows from the bound j ~Jk�J j = O(k�1=2)
that x is at distance more than 1

2
Æ
0 from RJ(sk). Therefore, the 
-transversality

to 0 of Jac(fk) implies that jJac(fk)(x)j is larger than � = min(1
2
Æ
0

; 
) (otherwise,

the downward gradient �ow of jJac(fk)j would reach a point of RJ(sk) at distance
less than 1

2
Æ
0 from x).

Recalling that j�@fkj = O(k�1=2), one gets that fk is a O(k�1=2)-approximately
holomorphic local di�eomorphism over a neighborhood of x. Therefore, choose

holomorphic complex coordinates on C P
2 near fk(x) and pull them back by fk to

obtain O(k�1=2)-approximately holomorphic local coordinates over a neighborhood
of x : in these coordinates, the map fk becomes the identity map, which ends the
proof of Theorem 3.

6. Further remarks

6.1. Branched coverings of C P2. A natural question to ask about the re-

sults obtained in this paper is whether the property of being a (singular) branched
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covering of C P2, i.e. the existence of a map to C P
2 which is locally modelled at

every point on one of the three maps of De�nition 2, strongly restricts the topology
of a general compact 4-manifold. Since the notion of approximately holomorphic

coordinate chart on X no longer has a meaning in this case, we relax De�nition 2
by only requiring the existence of a local identi�cation of the covering map with
one of the model maps in a smooth local coordinate chart on X. However we keep
requiring that the corresponding local coordinate chart on C P

2 be approximately

holomorphic, so that the branch locus in C P2 remains an immersed symplectic curve
with cusps. Call such a map a topological singular branched covering of C P2. Then
the following holds :

Proposition 10. Let X be a compact 4-manifold and consider a topological
singular covering f : X ! C P

2 branched along a submanifold R � X. Then X

carries a symplectic structure arbitrarily close to f
�
!0, where !0 is the standard

symplectic structure of C P2.

Proof. The closed 2-form f
�
!0 on X de�nes a symplectic structure on X �R

which degenerates along R. Therefore, one needs to perturb it by adding a small
multiple of a closed 2-form with support in a neighborhood of R in order to make

it nondegenerate. This perturbation can be constructed as follows.
Call C the set of cusp points, i.e. the points of R where the tangent space to R

lies in the kernel of the di�erential of f , or equivalently the points around which f is
modelled on the map (z1; z2) 7! (z31�z1z2; z2). Consider a point x 2 C, and work in

local coordinates such that f identi�es with the model map. In these coordinates,
a local equation of R is z2 = 3z21 , and the kernel K of the di�erential of f coincides
at every point of R with the subspace C � f0g of the tangent space ; this complex
identi�cation determines a natural orientation ofK. Fix a constant �x > 0 such that

BC (0; 2�x)�BC (0; 2�
2
x) is contained in the local coordinate patch, and choose cut-o�

functions �1 and �2 over C in such a way that �1 equals 1 over BC (0; �x) and vanishes
outside of BC (0; 2�x), and that �2 equals 1 over BC (0; �

2
x) and vanishes outside of

BC (0; 2�
2
x). Then, let  x be the 2-form which equals d(�1(z1)�2(z2) x1 dy1) over the

local coordinate patch, where x1 and y1 are the real and imaginary parts of z1, and

which vanishes over the remainder of X : the 2-form  x coincides with dx1 ^ dy1
over a neighborhood of x. More importantly, it follows from the choice of the cut-o�
functions that the restriction of  x to K = C � f0g is non-negative at every point
of R, and positive non-degenerate at every point of R which lies su�ciently close

to x.
Similarly, consider a point x 2 R away from C and local coordinates such that f

identi�es with the model map (z1; z2) 7! (z21 ; z2). In these coordinates, R identi�es
with f0g � C , and the kernel K of the di�erential of f coincides at every point

of R with the subspace C � f0g of the tangent space. Fix a constant �x > 0
such that BC (0; 2�x) � BC (0; 2�x) is contained in the local coordinate patch, and
choose a cut-o� function � over C which equals 1 over BC (0; �x) and 0 outside of
BC (0; 2�x). Then, let  x be the 2-form which equals d(�(z1)�(z2) x1 dy1) over the
local coordinate patch, where x1 and y1 are the real and imaginary parts of z1, and

which vanishes over the remainder of X : as previously, the restriction of  x to
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K = C � f0g is non-negative at every point of R, and positive non-degenerate at
every point of R which lies su�ciently close to x.

Choose a �nite collection of points xi of R (including all the cusp points) in such

a way that the neighborhoods of xi over which the 2-forms  xi restrict positively
to K cover all of R, and de�ne � as the sum of all the 2-forms  xi . Then it follows
from the above de�nitions that the 2-form � is exact, and that at any point of R
its restriction to the kernel of the di�erential of f is positive and non-degenerate.
Therefore, the 4-form f

�
!0 ^ � is a positive volume form at every point of R.

Now choose any metric on a neighborhood of R, and let dR be the distance
function to R. It follows from the compactness of X and R and from the general
properties of the map f that, using the orientation induced by f and the chosen
metric to implicitly identify 4-forms with functions, there exist positive constants

K, C, C 0 and M such that the following bounds hold over a neighborhood of R :
f
�
!0 ^ f

�
!0 � KdR, f

�
!0 ^ � � C � C

0
dR, and j� ^ �j � M . Therefore, for all

� > 0 one gets over a neighborhood of R the bound

(f �!0 + � �) ^ (f �!0 + � �) � (2� C � �
2
M) + (K � 2� C 0)dR:

If � is chosen su�ciently small, the coe�cients 2� C � �
2
M and K � 2� C 0 are both

positive, which implies that the closed 2-form f
�
!0 + � � is everywhere nondegen-

erate, and therefore symplectic.

Another interesting point is the compatibility of our approximately holomorphic
singular branched coverings with respect to the symplectic structures ! on X and
!0 in C P

2 (as opposed to the compatibility with the almost-complex structures,
which has been a major preoccupation throughout the previous sections).

It is easy to check that given a covering map f : X ! C P
2 de�ned by a section

of C 3 
 L
k, the number of preimages of a generic point is equal to 1

4�2
k
2(!2

:[X]),

while the homology class of the preimage of a generic line C P1 � C P
2 is Poincaré

dual to 1
2�
k[!]. If we normalize the standard symplectic structure !0 on C P

2 in

such a way that the symplectic area of a line C P1 � C P
2 is equal to 2�, it follows

that the cohomology class of f �!0 is [f
�
!0] = k[!].

As we have said above, the pull-back f �!0 of the standard symplectic form of
C P

2 by the covering map degenerates along the set of branch points, so there is no

chance of (X; f �!0) being symplectic and symplectomorphic to (X; k!). However,
one can prove the following result which is nearly as good :

Proposition 11. The 2-forms ~!t = tf
�
!0+(1� t)k! on X are symplectic for

all t 2 [0; 1). Moreover, for t 2 [0; 1) the manifolds (X; ~!t) are all symplectomorphic
to (X; k!).

This means that f �!0 is, in some sense, a degenerate limit of the symplectic
structure de�ned by k! : therefore the covering map f behaves quite reasonably
with respect to the symplectic structures.

Proof. The 2-forms ~!t are all closed and lie in the same cohomology class.
We have to show that they are non-degenerate for t < 1. For this, let x be any

point of X and let v be a nonzero tangent vector at x. It is su�cient to prove that
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there exists a vector w 2 TxX such that !(v; w) > 0 and f
�
!0(v; w) � 0 : then

~!t(v; w) > 0 for all t < 1, which implies the non-degeneracy of ~!t.
Recall that, by de�nition, there exist local approximately holomorphic coordi-

nate maps � over a neighborhood of x and  over a neighborhood of f(x) such that
locally f =  

�1 Æ g Æ � where g is a holomorphic map from a subset of C 2 to C 2 .
De�ne w = �

�1
� J0��v, where J0 is the standard complex structure on C 2 : then we

have w = (��J0)v and, because g is holomorphic, f�w = ( �J0)f�v.
Because the coordinate maps are O(k�1=2)-approximately holomorphic, we have

jw � Jvj � Ck
�1=2jvj and jf�w � J0f�vj � Ck

�1=2jf�vj, where C is a constant

and J0 is the standard complex structure on C P
2. It follows that !(v; w) �

jvj2�Ck�1=2jvj2 > 0, and that !0(f�v; f�w) � jf�vj
2�Ck�1=2jf�vj

2 � 0. Therefore,
~!t(v; w) > 0 for all t 2 [0; 1) ; since the existence of such a w holds for every nonzero

vector v, this proves that the closed 2-forms ~!t are non-degenerate, and therefore
symplectic.

Moreover, these symplectic forms all lie in the cohomology class [k!], so it
follows from Moser's stability theorem that the symplectic structures de�ned on X
by ~!t for t 2 [0; 1) are all symplectomorphic.

6.2. Symplectic Lefschetz pencils. The techniques used in this paper can
also be applied to the construction of sections of C 2 
 L

k (i.e. pairs of sections of
L
k) satisfying appropriate transversality properties : this is the existence result for

Lefschetz pencil structures (and uniqueness up to isotopy for a given value of k)

obtained by Donaldson [D2].
For the sake of completeness, we give here an overview of a proof of Donaldson's

theorem using the techniques described in the above sections. Let (X;!) be a
compact symplectic manifold (of arbitrary dimension 2n) such that 1

2�
[!] is integral,

and as before consider a compatible almost-complex structure J , the corresponding
metric g, and the line bundle L whose �rst Chern class is 1

2�
[!], endowed with a

Hermitian connection of curvature �i !. The required properties of the sections we
wish to construct are determined by the following statement :

Proposition 12. Let sk = (s0k; s
1
k) be asymptotically holomorphic sections of

C 2 
 L
k over X for all large k, which we assume to be �-transverse to 0 for some

� > 0. Let Fk = s
�1
k (0) (it is a real codimension 4 symplectic submanifold of X),

and de�ne the map fk = Psk = (s0k : s
1
k) from X � Fk to C P1. Assume furthermore

that @fk is �-transverse to 0, and that �@fk vanishes at every point where @fk = 0.
Then, for all large k, the section sk and the map fk de�ne a structure of symplectic
Lefschetz pencil on X.

Indeed, Fk corresponds to the set of base points of the pencil, while the hyper-

surfaces (�k;u)u2CP1 forming the pencil are de�ned to be �k;u = f
�1
k (u)[Fk, i.e. �k;u

is the set of all points where (s0k; s
1
k) belongs to the complex line in C 2 determined

by u. The transversality to 0 of sk gives the expected pencil structure near the base
points, and the asymptotic holomorphicity implies that, near any point of X � Fk

where @fk is not too small, the hypersurfaces �k;u are smooth and symplectic (and

even approximately J-holomorphic).
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Moreover, the transversality to 0 of @fk implies that @fk becomes small only
in the neighborhood of �nitely many points where it vanishes, and that at these
points the holomorphic Hessian @@fk is large enough and nondegenerate. Because
�@fk also vanishes at these points, an argument similar to that of �5.2 shows that,
near its critical points, fk behaves like a complex Morse function, i.e. it is locally
approximately holomorphically modelled on the map (z1; : : : ; zn) 7!

P
z
2
i from C n

to C . The approximate holomorphicity of fk and its structure at the critical points
can be easily shown to imply that the hypersurfaces �k;u are all symplectic, and

that only �nitely many of them have isolated singular points, which correspond to
the critical points of fk and whose structure is therefore completely determined.

Therefore, the construction of a Lefschetz pencil structure on X can be car-
ried out in three steps. The �rst step is to obtain for all large k sections sk of
C 2 
 L

k which are asymptotically holomorphic and transverse to 0 : for example,

the existence of such sections follows immediately from the main result of [A1]. As a

consequence, the required properties are satis�ed on a neighborhood of Fk = s
�1
k (0).

The second step is to perturb sk, away from Fk, in order to obtain the transver-
sality to 0 of @fk. For this purpose, one uses an argument similar to that of

�2.2, but where Proposition 2 has to be replaced by a similar result for approx-
imately holomorphic functions de�ned over a ball of C n with values in C n which
has been announced by Donaldson (see [D2]). Over a neighborhood of any given
point x 2 X � Fk, composing with a rotation of C 2 in order to ensure the non-
vanishing of s0k over a ball centered at x and de�ning hk = (s0k)

�1
s
1
k, one remarks

that the transversality to 0 of @fk is locally equivalent to that of @hk. Choosing
local approximately holomorphic coordinates zik, it is possible to write @hk as a lin-
ear combination

Pn
i=1 u

i
k�

i
k of the 1-forms �ik = @(zik:(s

0
k)
�1
s
ref
k;x). The existence of

wk 2 C n of norm less than a given Æ ensuring the transversality to 0 of uk�wk over
a neighborhood of x is then given by the suitable local transversality result, and it
follows easily that the section (s0k; s

1
k �

P
w
i
kz

i
ks

ref
k;x) satis�es the required transver-

sality property over a ball around x. The global result over the complement in X

of a small neighborhood of Fk then follows by applying Proposition 3.
An alternate strategy allows one to proceed without proving the local transver-

sality result for functions with values in C n , if one assumes s0k and s1k to be linear
combinations of sections with uniform Gaussian decay (this is not too restrictive

since the iterative process described in [A1] uses precisely the sections srefk;x as build-

ing blocks). In that case, it is possible to locally trivialize the cotangent bundle

T
�
X, and therefore work component by component to get the desired transversality

result ; in a manner similar to the argument of [A1], one uses Lemma 6 to reduce
the problem to the transversality of sections of line bundles over submanifolds of
X, and Proposition 6 as local transversality result. The assumption on sk is used

to prove the existence of asymptotically holomorphic sections which approximate
sk very well over a neighborhood of a given point x 2 X and have Gaussian decay
away from x : this makes it possible to �nd perturbations with Gaussian decay
which at the same time behave nicely with respect to the trivialization of T �X.
This way of obtaining the transversality to 0 of @fk is very technical, so we don't

describe the details.
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The last step in the proof of Donaldson's theorem is to ensure that �@fk vanishes
at the points where @fk vanishes, by perturbing sk by O(k

�1=2) over a neighborhood
of these points. The argument is a much simpler version of �4.2 : on a neighborhood

of a point x where @fk vanishes, one de�nes a section � of f �kT C P
1 by �(expx(�)) =

�(j�j) �@fk(x)(�), where � is a cut-o� function, and one uses � as a perturbation of

sk in order to cancel the antiholomorphic derivative at x.

6.3. Symplectic ampleness. We have seen that similar techniques apply in
various situations involving very positive bundles over a compact symplectic man-
ifold, such as constructing symplectic submanifolds ([D1],[A1]), Lefschetz pencils

[D2], or covering maps to C P
2. In all these cases, the result is the exact approxi-

mately holomorphic analogue of a classical result of complex projective geometry.
Therefore, it is natural to wonder if there exists a symplectic analogue of the notion
of ampleness : for example, the line bundle L endowed with a connection of cur-
vature �i !, when raised to a su�ciently large power, admits many approximately

holomorphic sections, and so it turns out that some of these sections behave like
generic sections of a very ample bundle over a complex projective manifold.

Let (X;!) be a compact 2n-dimensional symplectic manifold endowed with a
compatible almost-complex structure, and �x an integer r : it seems likely that any

su�ciently positive line bundle over X admits r + 1 approximately holomorphic
sections whose behavior is similar to that of generic sections of a very ample line
bundle over a complex projective manifold of dimension n. For example, the zero
set of a suitable section is a smooth approximately holomorphic submanifold of
X ; two well-chosen sections de�ne a Lefschetz pencil ; for r = n, one expects

that n + 1 well-chosen sections determine an approximately holomorphic singular
covering X ! C P

n (this is what we just proved for n = 2) ; for r = 2n, it should
be possible to construct an approximately holomorphic immersion X ! C P

2n, and

for r > 2n a projective embedding. Moreover, in all known cases, the space of
�good� sections is connected when the line bundle is su�ciently positive, so that
the structures thus de�ned are in some sense canonical up to isotopy.

However, the constructions tend to become more and more technical when one
gets to the more sophisticated cases, and the development of a general theory of

symplectic ampleness seems to be a necessary step before the relations between
the approximately holomorphic geometry of compact symplectic manifolds and the
ordinary complex projective geometry can be fully understood.



78 III. SYMPLECTIC 4-MANIFOLDS AS BRANCHED COVERINGS OF CP
2



Bibliographie

[ABKP] J. Amorós, F. Bogomolov, L. Katzarkov, T. Pantev, Symplectic Lefschetz Fibrations with

Arbitrary Fundamental Groups, preprint (1998), math.GT/9810042.

[A1] D. Auroux, Asymptotically Holomorphic Families of Symplectic Submanifolds, Geom.

Funct. Anal. 7 (1997), 971�995.

[A2] D. Auroux, Symplectic 4-manifolds as Branched Coverings of C P2, preprint (1998).

[BK] F. Bogomolov, L. Katzarkov, Symplectic Four-Manifolds and Projective Surfaces, Topo-

logy Appl. 88 (1998), 79�109.

[D1] S.K. Donaldson, Symplectic Submanifolds and Almost-complex Geometry, J. Di�erential

Geom. 44 (1996), 666�705.

[D2] S.K. Donaldson, en préparation.

[D3] S.K. Donaldson, Lefschetz Fibrations in Symplectic Geometry, Documenta Math., Extra

Volume ICM 1998, II, 309�314.

[FM] R. Friedman, J.W. Morgan,Algebraic Surfaces and Seiberg-Witten Invariants, J. Algebraic

Geom. 6 (1997), 445�479.

[Fu] T. Fuller, Lefschetz Fibrations and 3-fold Branched Covering Spaces, preprint (1998),

math.GT/9806010.

[Go] R.E. Gompf, A New Construction of Symplectic Manifolds, Ann. of Math. 142 (1995),

527�595.

[Gri] P.A. Gri�ths, Entire Holomorphic Mappings in One and Several Complex Variables, Ann.

Math. Studies no 85, Princeton University Press, Princeton, 1976.

[GH] P. Gri�ths, J. Harris, Principles of Algebraic Geometry, Wiley-Interscience, New York,

1978.

[Gro1] M. Gromov, Pseudo-Holomorphic Curves in Symplectic Manifolds, Inventiones Math. 82

(1985), 307�347.

[Gro2] M. Gromov, Partial Di�erential Relations, Ergebnisse Math. (3) no 9, Springer, 1986.

[McS1] D. McDu� and D. Salamon, Introduction to Symplectic Topology, Oxford University Press,

Oxford, 1995.

[McS2] D. McDu� and D. Salamon, J-holomorphic Curves and Quantum Cohomology, Univ. Lec-

ture Series no 6, Amer. Math. Soc., Providence, 1994.

[Moi1] B. Moishezon, Stable Branch Curves and Braid Monodromies, Algebraic Geometry (Chi-

cago, 1980), Lecture Notes in Math. 862, Springer, 1981, 107�192.

[Moi2] B. Moishezon, The Arithmetic of Braids and a Statement of Chisini, Geometric Topology

(Haifa, 1992), Contemp. Math. 164, Amer. Math. Soc., Providence, 1994, 151�175.

[Mor] J.W. Morgan, The Seiberg-Witten Equations and Applications to the Topology of Smooth

Four-Manifolds, Mathematical Notes no 44, Princeton University Press, Princeton, 1996.

[MST] J.W. Morgan, Z. Szabó and C.H. Taubes, A Product Formula for the Seiberg-Witten

Invariants and the Generalized Thom Conjecture, J. Di�erential Geom. 44 (1996), 706�

788.

79



80 BIBLIOGRAPHIE

[Pa] R. Paoletti, Symplectic Subvarieties of Holomorphic Fibrations over Symplectic Manifolds,

preprint (1997).

[Pi] R. Piergallini, Four-manifolds as 4-fold Branched Covers of S4, Topology 34 (1995), 497�

508.

[Sch] E. Schmidt, Die Brunn-Minkowskische Ungleichung und ihr Spiegelbild sowie die isope-

rimetrische Eigenschaft der Kugel in der euklidischen und nichteuklidischen Geometrie,

Math. Nachrichten 1 (1948), 81�157.

[Si] J.C. Sikorav, Construction de sous-variétés symplectiques, Séminaire Bourbaki no 844

(1998).

[T1] C.H. Taubes, The Seiberg-Witten and Gromov Invariants, Math. Res. Lett. 2 (1995),

221�238.

[T2] C.H. Taubes, SW ) Gr : From the Seiberg-Witten Equations to Pseudo-Holomorphic

Curves, J. Amer. Math. Soc. 9 (1996), 845�918.

[Th] W. Thurston, Some Simple Examples of Symplectic Manifolds, Proc. Amer. Math. Soc.

55 (1976), 467�468.

[W] E. Witten, Monopoles and 4-manifolds, Math. Res. Lett. 1 (1994), 769�796.

[Y] Y. Yomdin, The Geometry of Critical and Near-critical Values of Di�erentiable Mappings,

Math. Annalen 264 (1983), 495�515.


